题目内容

2.如图,在平面直角坐标系xOy中,已知点A($\sqrt{2}$,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是(  )
A.向左平移1个单位,再向下平移1个单位
B.向左平移(2$\sqrt{2}$-1)个单位,再向上平移1个单位
C.向右平移$\sqrt{2}$个单位,再向上平移1个单位
D.向右平移1个单位,再向上平移1个单位

分析 过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.

解答 解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,
过B作BH⊥x轴于H,
∵B(1,1),
∴OB=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∵A($\sqrt{2}$,0),
∴C(1+$\sqrt{2}$,1)
∴OA=OB,
∴则四边形OACB是菱形,
∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,
故选D.

点评 本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网