题目内容
14.①△ABE≌△DCF;②$\frac{FP}{PH}$=$\frac{3}{5}$;③DP2=PH•PB;④$\frac{{S}_{△BPD}}{{S}_{正方形ABCD}}$=$\frac{\sqrt{3}-1}{4}$.
其中正确的是①③④.(写出所有正确结论的序号)
分析 根据等边三角形的性质和正方形的性质,得到∠ABE=∠DCF,∠A=∠ADC,AB=CD,证得△ABE≌△DCF,故①正确;由于∠FDP=∠PBD,∠DFP=∠BPC=60°,推出△DFP∽△BPH,得到$\frac{PF}{PH}$=$\frac{DF}{PB}$=$\frac{DF}{CD}$=$\frac{\sqrt{3}}{3}$故②错误;由于∠PDH=∠PCD=30°,∠DPH=∠DPC,推出△DPH∽△CPD,得到$\frac{PD}{CD}$=$\frac{PH}{PD}$,PB=CD,等量代换得到PD2=PH•PB,故③正确;根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积-△BCD的面积,得到$\frac{{S}_{△BPD}}{{S}_{正方形ABCD}}$=$\frac{\sqrt{3}-1}{4}$故④正确.
解答 解:∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
在△ABE与△CDF中,
$\left\{\begin{array}{l}{∠A=∠ADC}\\{∠ABE=∠DCF}\\{AB=CD}\end{array}\right.$,
∴△ABE≌△DCF,故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH,
∴$\frac{PF}{PH}$=$\frac{DF}{PB}$=$\frac{DF}{CD}$=$\frac{\sqrt{3}}{3}$,故②错误;
∵∠PDH=∠PCD=30°,
∵∠DPH=∠DPC,
∴△DPH∽△CDP,
∴$\frac{PD}{CD}$=$\frac{PH}{PD}$,
∴PD2=PH•CD,![]()
∵PB=CD,
∴PD2=PH•PB,故③正确;
如图,过P作PM⊥CD,PN⊥BC,
设正方形ABCD的边长是4,△BPC为正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°
∴PN=PB•sin60°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,PM=PC•sin30°=2,
S△BPD=S四边形PBCD-S△BCD=S△PBC+S△PDC-S△BCD=$\frac{1}{2}$×4×2$\sqrt{3}$+$\frac{1}{2}$×2×4-$\frac{1}{2}$×4×4=4$\sqrt{3}$+4-8=4$\sqrt{3}$-4,
∴$\frac{{S}_{△BPD}}{{S}_{正方形ABCD}}$=$\frac{\sqrt{3}-1}{4}$.
故答案为:①③④.
点评 本题考查的正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.
| A. | 如图1,展开后测得∠1=∠2 | |
| B. | 如图2,展开后测得∠1=∠2且∠3=∠4 | |
| C. | 如图3,测得∠1=∠2 | |
| D. | 如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD |
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
| A. | 有两个不相等的实数根 | B. | 有两个相等的实数根 | ||
| C. | 两个根都是自然数 | D. | 无实数根 |