题目内容
1.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{6}$ |
分析 画树状图展示所有36种等可能的结果数,再找出两次抽取的数字的积为奇数的结果数,然后根据概率公式求解.
解答 解:画树状图为:![]()
共有36种等可能的结果数,其中两次抽取的数字的积为奇数的结果数为9,
所以随机抽取一张,两次抽取的数字的积为奇数的概率=$\frac{9}{36}$=$\frac{1}{4}$.
故选B.
点评 本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
练习册系列答案
相关题目
11.已知点P(m,n)是一次函数y=x-1的图象位于第一象限部分上的点,其中实数m、n满足(m+2)2-4m+n(n+2m)=8,则点P的坐标为( )
| A. | ($\frac{1}{2}$,-$\frac{1}{2}$) | B. | ($\frac{5}{3}$,$\frac{2}{3}$) | C. | (2,1) | D. | ($\frac{3}{2}$,$\frac{1}{2}$) |
9.下表是世界人口增长趋势数据表:
(1)请你认真研究上面数据表,求出从1960年到2010年世界人口平均每年增长多少亿人;
(2)利用你在(1)中所得到的结论,以1960年30亿人口为基础,设计一个最能反映人口数量y关于年份x的函数关系式,并求出这个函数的解析式;
(3)利用你在(2)中所得的函数解析式,预测2020年世界人口将达到多少亿人.
| 年份x | 1960 | 1974 | 1987 | 1999 | 2010 |
| 人口数量y(亿) | 30 | 40 | 50 | 60 | 69 |
(2)利用你在(1)中所得到的结论,以1960年30亿人口为基础,设计一个最能反映人口数量y关于年份x的函数关系式,并求出这个函数的解析式;
(3)利用你在(2)中所得的函数解析式,预测2020年世界人口将达到多少亿人.
13.已知x1、x2是方程x2+3x-1=0的两个实数根,那么下列结论正确的是( )
| A. | x1+x2=-1 | B. | x1+x2=-3 | C. | x1+x2=1 | D. | x1+x2=3 |
10.一元一次方程3x-3=0的解是( )
| A. | x=1 | B. | x=-1 | C. | x=$\frac{1}{3}$ | D. | x=0 |