题目内容
20.(1)等腰直角三角形是不是“少见的三角形”?
(2)已知如图所示的钝角三角形是一个“少见的三角形”,请你画出分割线的大致位置,并求出顶角的度数;
(3)锐角三角形中有没有“少见的三角形”?如果没有,请说明理由;如果有,请画出图形并求出顶角的度数.
分析 (1)画出图形,利用三角形内角和进行计算,可得等腰直角三角形是“少见的三角形”;
(2)画出图形,利用等腰三角形的性质、三角形内角和进行解答;
(3)有,画出图形,利用等腰三角形的性质、三角形内角和进行解答.
解答 解:(1)如图1,![]()
当过顶角∠C的顶点的直线CD把△ABC分成了两个等腰三角形,则AC=BC,AD=CD=BD,
设∠A=x°,
则∠ACD=∠A=x°,∠B=∠A=x°,
∴∠BCD=∠B=x°,
∵∠A+∠ACB+∠B=180°
∴x+x+x+x=180,
解得x=45,
则顶角是90°;
∴△ABC是等腰直角三角形,
即等腰直角三角形是“少见的三角形”;
(2)如图2,![]()
AC=CD=AB,BD=AD,
设∠B=x°,
∵AB=AC,
∴∠C=∠B=x°,
∵BD=AD,
∴∠BAD=∠B=x°,
∴∠ADC=∠B+∠BAD=2x°,
∵AC=DC,
∴∠ADC=∠CAD=2x°,
∴∠BAC=3x°,
∴x+x+3x=180,
x=36°,
则顶角∠BAC=108°.
(3)如图3,![]()
当过底角∠CAB的角平分线AD把△ABC分成了两个等腰三角形,则有AC=BC,AB=AD=CD,
设∠C=x°,
∵AD=CD,
∴∠CAD=∠C=x°,
∴∠ADB=∠CAD+∠C=2x°,
∵AD=AB,
∴∠B=∠ADB=2x°,
∵AC=BC,
∴∠CAB=∠B=2x°,
∵∠CAB+∠B+∠C=180°,
∴x+2x+2x=180,
x=36°,
则顶角是36°.
点评 本题考查了等腰三角形的性质及其判定.作此题的时候,首先大致画出符合条件的图形,然后根据等腰三角形的性质、三角形的内角和定理及其推论找到角之间的关系,列方程求解.
练习册系列答案
相关题目
5.已知A组有三个数:1,-2,3,B组有三个数:1,-$\sqrt{2}$,$\sqrt{3}$,若从B组任选两个数分别与A组的每个数相乘,共得到6个数,再把这6个数相加得到数m,则m>0的概率为( )
| A. | 0 | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | 1 |