题目内容

5.如图为一种平板电脑保护套的支架侧视图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架,为了观看舒适,可以调整倾斜角∠ANB的大小,但平板的下端点N只能在底座边CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图(见答题纸),其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN,根据以上数据,判断倾斜角∠ANB能小于30°吗?请说明理由.

分析 根据∠ANB=30°时,作ME⊥CB,垂足为E,根据锐角三角函数的定义求出EB及BN的长,进而可得出结论.

解答 解:当∠ANB=30°时,作ME⊥CB,垂足为E,
∵MB=MN,
∴∠B=∠ANB=30°.
在Rt△BEM中,
∵cosB=$\frac{EB}{MB}$,
∴EB=MB•cosB=(AN-AM)•cosB=6$\sqrt{3}$cm.
∵MB=MN,ME⊥BC,
∴BN=2BE=12$\sqrt{3}$cm.
∵CB=AN=20cm,且12$\sqrt{3}$>20,
∴此时N不在CB边上,与题目条件不符,随着∠ANB度数的减小,BN的长度增加,
∴倾斜角不可以小于30°.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网