ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖª£ºbÊÇ×îСµÄÕýÕûÊý£¬ÇÒÂú×㣨c-5£©2+|a+b|=0£®£¨1£©ÇëÇó³öa¡¢b¡¢cµÄÖµ£»
£¨2£©a¡¢b¡¢cËù¶ÔÓ¦µÄµã·Ö±ðΪA¡¢B¡¢C£¬µãPΪ¶¯µã£¬Æä¶ÔÓ¦µÄÊýΪx£¬µãPÔÚ0µ½2Ö®¼äÔ˶¯Ê±£¨¼´0¡Üx¡Ü2ʱ£©£¬Ç뻯¼òʽ×Ó£º|x-3|+2|x+2|£»£¨Ð´³ö»¯¼ò¹ý³Ì£©
£¨3£©ÔÚ£¨1£©¡¢£¨2£©Ìõ¼þÏ£¬µãA¡¢B¡¢C¿ªÊ¼ÔÚÊýÖáÉÏÔ˶¯£¬ÈôµãAÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏò×óÔ˶¯£¬Í¬Ê±£¬µãBºÍµãC·Ö±ðÒÔÿÃë2¸öµ¥Î»³¤¶ÈºÍ5¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòÓÒÔ˶¯£¬¼ÙÉètÃëÖÓ¹ýºó£¬ÈôµãBÓëµãCÖ®¼äµÄ¾àÀë±íʾΪBC£¬µãAÓëµãBÖ®¼äµÄ¾àÀë±íʾΪAB£¬ÇëÎÊ£ºBC-ABµÄÖµÊÇ·ñËæ×Åʱ¼ätµÄ±ä»¯¶ø±ä»¯£¿Èô±ä»¯£¬Çë˵Ã÷ÀíÓÉ£»Èô²»±ä£¬ÇëÇóÆäÖµ£®
·ÖÎö £¨1£©¸ù¾ÝbÊÇ×îСµÄÕýÕûÊý£¬¼´¿ÉÈ·¶¨bµÄÖµ£¬È»ºó¸ù¾Ý·Ç¸ºÊýµÄÐÔÖÊ£¬¼¸¸ö·Ç¸ºÊýµÄºÍÊÇ0£¬Ôòÿ¸öÊýÊÇ0£¬¼´¿ÉÇóµÃa£¬b£¬cµÄÖµ£»
£¨2£©¸ù¾ÝxµÄ·¶Î§£¬È·¶¨x-3£¬x+2µÄ·ûºÅ£¬È»ºó¸ù¾Ý¾ø¶ÔÖµµÄÒâÒå¼´¿É»¯¼ò£»
£¨3£©¸ù¾ÝA£¬B£¬CµÄÔ˶¯Çé¿ö¼´¿ÉÈ·¶¨AB£¬BCµÄ±ä»¯Çé¿ö£¬¼´¿ÉÈ·¶¨BC-ABµÄÖµ£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒâµÃ£ºc-5=0£¬a+b=0£¬b=1£¬
¡àa=-1£¬b=1£¬c=5£»
£¨2£©µ±-2¡Üx¡Ü3ʱ£¬x-3¡Ü0£¬x+2£¾0£¬
¡à|x-3|+2|x+2|=3-x+2x+4=7+x£»
µ±x£¾3ʱ£¬x-3£¾0£¬x+2£¾0£®
¡à|x-3|+2|x+2|=x-3+2x+4=3x+1£»
£¨3£©BC=5+5t-£¨1+2t£©=3t+4£»
AB=1+2t-£¨-1-t£©=3t+2£»
BC-AB=3t+4-£¨3t+2£©=2£»
¡àBC-ABµÄÖµ²»Ëæ×Åʱ¼ätµÄ±ä»¯¶ø¸Ä±ä£¬ÆäֵΪ2£®
µãÆÀ ±¾Ì⿼²éÁËÊýÖáÓë¾ø¶ÔÖµ£¬ÕýÈ·Àí½âAB£¬BCµÄ±ä»¯Çé¿öÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | $\frac{2}{3}$¦ÐxyµÄϵÊýÊÇ$\frac{2}{3}$ | B£® | 22xy2µÄ´ÎÊýÊÇ5 | ||
| C£® | $\frac{-x+1}{3}$µÄ³£ÊýÏîÊÇ1 | D£® | 0Êǵ¥Ïîʽ |
1£®Èôµ¥Ïîʽ3amb4Óë-8bna2ÊÇͬÀàÏÔòm+n=£¨¡¡¡¡£©
| A£® | -5 | B£® | 7 | C£® | 6 | D£® | 5 |
11£®
Èçͼ£¬ÌÝ×ÓAB¿¿ÔÚǽÉÏ£¬ÌÝ×ÓµÄµ×¶Ë Aµ½Ç½¸ù O µÄ¾àÀëΪ5m£¬ÌÝ×ӵĶ¥¶Ë Bµ½µØÃæµÄ¾àÀëΪ12m£¬ÏÖ½«ÌÝ×ÓµÄµ×¶Ë AÏòÍâÒÆ¶¯µ½ A¡ä£¬Ê¹ÌÝ×ÓµÄµ×¶Ë A¡äµ½Ç½¸ùOµÄ¾àÀëµÈÓÚ6m£¬Í¬Ê±ÌÝ×ӵĶ¥¶Ë BϽµÖÁ B¡ä£¬ÄÇôBB¡ä£¨¡¡¡¡£©
| A£® | СÓÚ1 m | B£® | ´óÓÚ1 m | C£® | µÈÓÚ1 m | D£® | СÓÚ»òµÈÓÚ1 m |
18£®ÏÂÁи÷¶Ôʽ×ÓÊÇͬÀàÏîµÄÊÇ£¨¡¡¡¡£©
| A£® | 4x2yÓë4y2x | B£® | 2abcÓë2ab | C£® | $-\frac{3}{a}$ Óë-3a | D£® | -x3y2Óë$\frac{1}{2}$y2x3 |