题目内容
10.(1)求每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式;
(2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?
分析 (1)观察函数图象,找出点的坐标,再利用待定系数法求出y与x之间的函数关系式;
(2)由日收入不少于110元,可得出关于x的一元一次不等式,解之即可得出结论.
解答 解:(1)设每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式为y=kx+b,
将(0,70)、(30,100)代入y=kx+b,
$\left\{\begin{array}{l}{b=70}\\{30k+b=100}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=1}\\{b=70}\end{array}\right.$,
∴每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式为y=x+70.
(2)根据题意得:x+70≥110,
解得:x≥40.
答:某“快递小哥”的日收入不少于110元,则他至少要派送40件.
点评 本题考查了一次函数的应用、待定系数法求一次函数解析式以及一元一次不等式的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出y与x之间的函数关系式;(2)根据日收入不少于110元,列出关于x的一元一次不等式.
练习册系列答案
相关题目
18.下列计算正确的是( )
| A. | (-3x)3=-27x3 | B. | (x-2)2=x4 | C. | x2÷x-2=x2 | D. | x-1•x-2=x2 |
15.
小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{8}$ |