题目内容
【题目】如图,等腰
的
边与正方形
的
边重合,
.
从如图所示位置水平向右匀速运动,直到点
落在边
上.设
,运动过程中
与正方形
的重合部分面积为
,则能反映
与
的函数关系的图象是( )
![]()
A.
B.![]()
C.
D.![]()
【答案】D
【解析】
由于△ABC是等腰直角三角形,依题意知道在开始移动时△ABC与正方形DEFG重叠部分的面积逐渐增加,当点
落在边DE边上,直到AB与GF重合,面积保持不变,之后面积开始逐渐减小,△ABC与正方形DEFG重叠部分的面积y与x函数的关系式函数二次函数,利用这些结论即可求解
∵△ABC是等腰直角三角形,
依题意知在开始移动时△ABC与正方形DEFG重叠部分的面积逐渐增加,
∴![]()
当点
落在边DE边上,直到AB与GF重合,面积保持不变,
![]()
之后面积开始逐渐减小,
![]()
D选项符合题意,
故选:D.
练习册系列答案
相关题目
【题目】“互联网+”时代,网上购物备受消费者青睐.某网店专售一种商品,其成本为每件
元,已知销售过程中,销售单价不低于成本单价,且物价部门规定这种商品的获利不得高于
.据市场调查发现,月销售量
(件)与销售单价
(元)之间的函数关系如表:
销售单价 | 65 | 70 | 75 | 80 | ··· |
月销售量 | 475 | 450 | 425 | 400 | ··· |
请根据表格中所给数据,求出
关于
的函数关系式;
设该网店每月获得的利润为
元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?
该网店店主热心公益事业,决定每月从利润中捐出
元资助贫困学生.为了保证捐款后每月利润不低于
元,且让消费者得到最大的实惠,该如何确定该商品的销售单价?