题目内容
已知x+
=3,求x2+
的值.
(1)一变:已知x+
=3,求x4+
的值;
(2)二变:已知x2-3x+1=0,求x4+
的值.
| 1 |
| x |
| 1 |
| x2 |
(1)一变:已知x+
| 1 |
| x |
| 1 |
| x4 |
(2)二变:已知x2-3x+1=0,求x4+
| 1 |
| x4 |
考点:分式的混合运算,完全平方公式
专题:
分析:(1)先求出x2+
=(x+
)2-2=7,再得出x4+
=(x2+
)2-2=47即可;
(2)由x2-3x+1=0,变形为x+
=3,再同(1)求出结果.
| 1 |
| x2 |
| 1 |
| x |
| 1 |
| x4 |
| 1 |
| x2 |
(2)由x2-3x+1=0,变形为x+
| 1 |
| x |
解答:解:(1)∵(x+
)2=x2+2+
,
∴x2+
=(x+
)2-2=32-2=7,
∴x4+
=(x2+
)2-2
=72-2
=47;
(2)∵x2-3x+1=0,
∴x+
=3,
∴x2+
=(x+
)2-2=32-2=7,
∴x4+
=(x2+
)2-2=72-2=47.
| 1 |
| x |
| 1 |
| x2 |
∴x2+
| 1 |
| x2 |
| 1 |
| x |
∴x4+
| 1 |
| x4 |
| 1 |
| x2 |
=72-2
=47;
(2)∵x2-3x+1=0,
∴x+
| 1 |
| x |
∴x2+
| 1 |
| x2 |
| 1 |
| x |
∴x4+
| 1 |
| x4 |
| 1 |
| x2 |
点评:本题考查了分式的混合运算以及完全平方式;运用完全平方式进行变形计算是解题的关键.
练习册系列答案
相关题目
将?ABCD绕O点旋转到?A′B′C′D′的位置,错误的是( )
| A、AB=A′B′ |
| B、AB一定平行于A′B′ |
| C、∠B=∠B′ |
| D、△ABC≌△A′B′C′ |