题目内容


如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于  


8

考点: 勾股定理;直角三角形斜边上的中线. 

专题: 计算题.

分析: 由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.

解答: 解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,

∴DE=AC=5,

∴AC=10.

在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得

CD===8.

故答案是:8.

点评: 本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网