题目内容
观察下列等式:
=1-
,
=
-
,
=
-
,将以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
=
(1)猜想并写出
= .
(2)直接写出下列各式的计算结果:
+
+
+…+
= ;
+
+
+…+
= ;
(3)探究并计算:
+
+
+…
的值.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出
| 1 |
| n(n+1) |
(2)直接写出下列各式的计算结果:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2011×2012 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
(3)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2n(2n+2) |
考点:分式的加减法
专题:规律型
分析:(1)观察原题等式,得出拆项方法,即可做出猜想;
(2)利用拆项法计算即可得到结果;
(3)利用得出的拆项法计算即可得到结果.
(2)利用拆项法计算即可得到结果;
(3)利用得出的拆项法计算即可得到结果.
解答:解:(1)
=
-
;
(2)原式=1-
+
-
+…+
-
=1-
=
;原式=1-
+
-
+…+
-
=
;
(3)原式=
×(
-
+
-
+…+
-
)=
×(
-
)
.
故答案为:(1)
-
;
;
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)原式=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2012 |
| 2011 |
| 2012 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| n |
| n+1 |
(3)原式=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n+2 |
| n |
| 4n+4 |
故答案为:(1)
| 1 |
| n |
| 1 |
| n+1 |
| 2011 |
| 2012 |
| n |
| n+1 |
点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
| b |
| a |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|