题目内容

1.解方程
(1)x2-2x=0
(2)y2-4y=-2
(3)2x2-9x+8=0
(4)3(x-5)2=2(5-x)

分析 (1)提取公因式x,直接解一元一次方程即可;
(2)利用配方法解方程即可;
(3)首先找出方程中a,b和c的值,求出△=b2-4ac的值,代入求根公式即可;
(4)先移项,然后提取公因式(x-5)即可得到(x-5)(2x-13)=0,最后解两个一元一次方程即可.

解答 解:(1)∵x2-2x=0,
∴x(x-2)=0,
∴x1=0,x2=2;
(2)∵y2-4y=-2,
∴y2-4y+4=-2+4,
∴(y-2)2=2,
∴y-2=±$\sqrt{2}$,
∴y1=2+$\sqrt{2}$,y2=2-$\sqrt{2}$;
(3)∵2x2-9x+8=0,
∴a=2,b=-9,c=8,
∴△=b2-4ac=81-64=17,
∴x=$\frac{9±\sqrt{17}}{2×2}$,
∴x1=$\frac{9-\sqrt{17}}{4}$,x2=$\frac{9+\sqrt{17}}{4}$;
(4)∵3(x-5)2=2(5-x),
∴3(x-5)2+2(x-5)=0,
∴(x-5)(2x-13)=0,
∴x1=5,x2=$\frac{13}{2}$.

点评 本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网