题目内容
若直角三角形两边长是5、12,则斜边长为 .
考点:勾股定理
专题:分类讨论
分析:直角三角形中斜边为最长边,无法确定边长为12的边是否为斜边,所以要讨论(1)边长为12的边为斜边;(2)边长为12的边为直角边.
解答:解:(1)当边长为12的边为斜边时,该直角三角形中斜边长为12;
(2)当边长为12的边为直角边时,则根据勾股定理得斜边长为
=13,
故该直角三角形斜边长为12或13,
故答案为:12或13.
(2)当边长为12的边为直角边时,则根据勾股定理得斜边长为
| 52+123 |
故该直角三角形斜边长为12或13,
故答案为:12或13.
点评:本题考查了勾股定理在直角三角形中的运用,考查了分类讨论思想,本题中运用分类讨论思想讨论边长为12的边是直角边还是斜边是解题的关键
练习册系列答案
相关题目
已知关于x的不等式(1-a)x>1的解集为x<
,则a的取值范围是( )
| 1 |
| 1-a |
| A、a≥1 | B、a>1 |
| C、0≤a<1 | D、0<a≤1 |