ÌâÄ¿ÄÚÈÝ
7£®¶ÔÓÚÆ½ÃæÖ±½Ç×ø±êϵÖеÄÈÎÒâÁ½µãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬ÎÒÃǰÑd£¨P1£¬P2£©=|x1-x2|y2-y2|½Ð×öP1¡¢P2Á½µã¼äµÄÖ±½Ç¾àÀ룮£¨1£©ÒÑÖªµãA£¨1£¬1£©£¬µãB£¨3£¬4£©£¬Ôòd£¨A£¬B£©=5£®
£¨2£©ÒÑÖªµãE£¨a£¬a£©£¬µãF£¨2£¬2£©£¬ÇÒd£¨E£¬F£©=4£¬Ôòa=0»ò4£®
£¨3£©ÒÑÖªµãM£¨m£¬2£©£¬µãN£¨1£¬0£©£¬Ôòd£¨M£¬N£©µÄ×îСֵΪ2£®
£¨4£©ÉèP0£¨x0£¬y0£©ÊÇÒ»¶¨µã£¬Q£¨x£¬y£©ÊÇÖ±Ïßy=ax+bÉϵ͝µã£¬ÎÒÃǰÑd£¨P0£¬Q£©µÄ×îСֵ½Ð×öP0µ½Ö±Ïßy=ax+bµÄÖ±½Ç¾àÀ룬ÊÔÇóµãM£¨5£¬1£©µ½Ö±Ïßy=x+2µÄÖ±½Ç¾àÀ룮
·ÖÎö £¨1£©¸ù¾ÝÆ½ÃæÖ±½Ç×ø±êϵÖеÄÈÎÒâÁ½µãµÄ¾àÀëµÄ¼ÆË㹫ʽ¼ÆËã¼´¿É£»
£¨2£©¸ù¾ÝÆ½ÃæÖ±½Ç×ø±êϵÖеÄÈÎÒâÁ½µãµÄ¾àÀëµÄ¼ÆË㹫ʽÁгöËãʽ£¬¸ù¾Ý¾ø¶ÔÖµµÄÐÔÖʼÆË㣻
£¨3£©¸ù¾ÝÆ½ÃæÖ±½Ç×ø±êϵÖеÄÈÎÒâÁ½µãµÄ¾àÀëµÄ¼ÆË㹫ʽºÍ¾ø¶ÔÖµµÄ·Ç¸ºÐÔ½â´ð£»
£¨4£©¸ù¾ÝÆ½ÃæÖ±½Ç×ø±êϵÖеÄÈÎÒâÁ½µãµÄ¾àÀëµÄ¼ÆË㹫ʽÁгöËãʽ£¬·Öx¡Ü-1¡¢-1£¼x¡Ü5ºÍx¡Ý5ÈýÖÖÇé¿ö£¬¸ù¾Ý¾ø¶ÔÖµµÄÐÔÖʼÆËã¼´¿É£®
½â´ð ½â£º£¨1£©µãA£¨1£¬1£©£¬µãB£¨3£¬4£©£¬
Ôòd£¨A£¬B£©=|3-1|+|4-1|=5£¬
¹Ê´ð°¸Îª£º5£»
£¨2£©¡ßµãE£¨a£¬a£©£¬µãF£¨2£¬2£©£¬d£¨E£¬F£©=4£¬
¡à|2-a|+|2-a|=4£¬
µ±a£¾2ʱ£¬a-2+a-2=4£¬
½âµÃa=4£¬
µ±a£¼2ʱ£¬2-a+2-a=4£¬
½âµÃa=0£¬
¹Ê´ð°¸Îª£º0»ò4£»
£¨3£©d£¨M£¬N£©=|1-m|+|0-2|=|1-m|+2£¬
¡ß|1-m|¡Ý0£¬
¡à|1-m|µÄ×îСֵΪ0£¬
Ôò|1-m|+2µÄ×îСֵΪ2£¬¼´d£¨M£¬N£©µÄ×îСֵΪ2£¬
¹Ê´ð°¸Îª£º2£®
£¨4£©ÉèµãNΪֱÏßy=x+2ÉÏÒ»µã£¬µãNµÄ×ø±êΪ£¨x£¬x+2£©£¬
Ôòd£¨M£¬N£©=|x-5|+|x+2-1|=|x-5|+|x+1|£¬
µ±x¡Ü-1ʱ£¬d£¨M£¬N£©=5-x-x-1=-2x+4£¬
ÓÉÒ»´Îº¯ÊýµÄÐÔÖÊ¿ÉÖª£¬d£¨M£¬N£©µÄÖµËæxµÄÔö´ó¶ø¼õС£¬
µ±x=-1ʱ£¬d£¨M£¬N£©µÄ×îСֵÊÇ6£»
µ±-1£¼x¡Ü5ʱ£¬d£¨M£¬N£©=5-x+x+1=6£»
µ±x¡Ý5ʱ£¬d£¨M£¬N£©=x-5+x+1=2x-4£¬
ÓÉÒ»´Îº¯ÊýµÄÐÔÖÊ¿ÉÖª£¬d£¨M£¬N£©µÄÖµËæxµÄÔö´ó¶øÔö´ó£¬
µ±x=5ʱ£¬d£¨M£¬N£©µÄ×îСֵÊÇ6£¬
×ÛÉÏËùÊö£¬µãM£¨5£¬1£©µ½Ö±Ïßy=x+2µÄÖ±½Ç¾àÀëΪ6£®
µãÆÀ ±¾Ì⿼²éµÄÊÇÆ½ÃæÖ±½Ç×ø±êϵÖеÄÈÎÒâÁ½µãµÄ¾àÀëµÄ¼ÆËãÒÔ¼°Ò»´Îº¯ÊýµÄÐÔÖÊ£¬ÕýÈ·Àí½âж¨ÒåÊǽâÌâµÄ¹Ø¼ü£¬¶ÔÓÚÒ»´Îº¯Êýy=kx+b£¬µ±k£¾0ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬k£¼0ʱ£¬yËæxµÄÔö´ó¶ø¼õС£®
| A£® | $4\sqrt{3}$ | B£® | $2\sqrt{3}$ | C£® | $\sqrt{3}$ | D£® | 4 |
| A£® | y1£¾y2£¾y3 | B£® | y2£¾y1£¾y3 | C£® | y2£¾y3£¾y1 | D£® | y3£¾y1£¾y2 |
| A£® | 2x-1=x | B£® | $\frac{1}{x}=1$ | C£® | x2+x=1 | D£® | $\frac{1}{2}$x-y=0 |