题目内容
已知函数y=(m+)x2+(2m﹣1)x﹣3.求证:不论m为何值,该函数图象与x轴必有交点.
解方程: .
如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
从-,0, ,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是__ _.
如图1,已知⊙O的半径为1,∠PAQ的正切值为,AQ是⊙O的切线,将⊙O从点A开始沿射线AQ的方向滚动,切点为A'.
(1)sin∠PAQ= ,cos∠PAQ= ;
(2)①如图1,当⊙O在初始位置时,圆心O到射线AP的距离为 ;
②如图2,当⊙O的圆心在射线AP上时,AA'= ;
(3)在⊙O的滚动过程中,设A与A'之间的距离为m,圆心O到射线AP的距离为n,求n与m之间的函数关系式,并探究当m分别在何范围时,⊙O与射线AP相交、相切、相离.
如图,矩形ABCD的一边BC与⊙O相切于G,DC=6,且对角线BD经过圆心O,AD交⊙O于点E,连接BE,BE恰好是⊙O的切线,已知点P在对角线BD上运动,若以B、P、G三点构成的三角形与△BED相似,则BP=______.
如图,在坐标系中,以A(0,2)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C',若C的对应点C'的坐标为(m,n),则点C的坐标为( )
A. (m, n+3) B. (m, n﹣3)
C. (m, n+2) D. (m, n﹣2)
若一元二次方程x2+2x+m=0有实数根,则m的取值范围是 ( )
A. m≤-1 B. m≤1
C. m≤4 D. m≤
用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A、B、E三个接触点,该球的大小就符合要求.图2是过球心O及A、B、E三点的截面示意图,求这种铁球的直径.