ÌâÄ¿ÄÚÈÝ
2£®Ä³É̳¡ÎªÁËÓ½Ó¡°6.1¶ùͯ½Ú¡°£¬ÒÔµ÷µÍ¼Û¸ñµÄ·½Ê½´ÙÏún¸ö²»Í¬µÄÍæ¾ß£¬µ÷ÕûºóµÄµ¥¼Ûy£¨Ôª£©Óëµ÷ÕûǰµÄµ¥¼Ûx£¨Ôª£©Âú×ãÒ»´Îº¯Êý¹ØÏµ£¬Èç±í£º| µÚ1¸ö | µÚ2¸ö | µÚ3¸ö | µÚ4¸ö | ¡ | µÚn¸ö | |
| µ÷Õûǰµ¥¼Ûx £¨Ôª£© | x1 | x2=6 | x3=72 | x4 | ¡ | xn |
| µ÷Õûºóµ¥¼Ûy £¨Ôª£© | y1 | y2=4 | y3=59 | y4 | ¡ | yn |
£¨1£©yÓëxµÄº¯Êý¹ØÏµÊ½Îª£¬xµÄȡֵ·¶Î§Îª£»
£¨2£©Ä³¸öÍæ¾ßµ÷Õûǰµ¥¼ÛÊÇ108Ôª£¬¹Ë¿Í¹ºÂòÕâ¸öÍæ¾ßÊ¡ÁËÔª£»
£¨3£©Õân¸öÍæ¾ßµ÷Õûǰ¡¢ºóµÄƽ¾ùµ¥¼Û·Ö±ðΪ$\overline{x}$£¨Ôª£©¡¢$\overline{y}$£¨Ôª£©£¬²ÂÏë$\overline{y}$Óë$\overline{x}$µÄ¹ØÏµÊ½£¬²¢Ð´³öÍÆµ¼¹ý³Ì£®
·ÖÎö £¨1£©Éèy=kx+b£¬°Ñ£¨6£¬4£©£¬£¨72.59£©´úÈëµÃµ½$\left\{\begin{array}{l}{6k+b=4}\\{72k+b=59}\end{array}\right.$£¬½â·½³Ì×é¼´¿É£®
£¨2£©ÀûÓã¨1£©µÄ¹ØÏµÊ½Çó³öy£¬Çó²î¼´¿É½â¾öÎÊÌ⣮
£¨3£©²ÂÏ룺$\overline y$=$\frac{5}{6}$$\overline x$-1£¬¸ù¾Ýƽ¾ùµ¥¼ÛµÄ¶¨Ò壬Áгöʽ×Ó¼ÆËã¼´¿É£®
½â´ð ½â£º£¨1£©Éèy=kx+b£¬°Ñ£¨6£¬4£©£¬£¨72.59£©´úÈëµÃµ½$\left\{\begin{array}{l}{6k+b=4}\\{72k+b=59}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=\frac{5}{6}}\\{b=-1}\end{array}\right.$
¡ày=$\frac{5}{6}$x-1£¨x£¾$\frac{18}{5}$£©£®
£¨2£©µ±x=108ʱ£¬y=89£¬
108-89=19£¬
¡à¹Ë¿Í¹ºÂòÕâ¸öÍæ¾ßÊ¡ÁË19Ôª£®
£¨3£©²ÂÏ룺$\overline y$=$\frac{5}{6}$$\overline x$-1
Ö¤Ã÷£ºy1=$\frac{5}{6}$x1-1£¬y2=$\frac{5}{6}$x2-1£¬¡£¬yn=$\frac{5}{6}$xn-1
¡à$\overline y$=$\frac{1}{n}$£¨y1+y2+¡+yn£©
=$\frac{1}{n}$£¨$\frac{5}{6}$x1-1+$\frac{5}{6}$x2-1+¡+$\frac{5}{6}$xn-1£©
=$\frac{1}{n}$$[{\frac{5}{6}£¨{x_1}+{x_2}+¡+{x_n}£©-n}]$
=$\frac{1}{n}$$[{\frac{5}{6}n\overline x-n}]$=$\frac{5}{6}$$\overline x$-1£®
µãÆÀ ±¾Ì⿼²éÒ»´Îº¯ÊýµÄÓ¦Óã¬Æ½¾ùµ¥¼ÛµÄ¶¨ÒåµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®
| A£® | 1-$\frac{3\sqrt{2}¦Ð}{16}$ | B£® | $\sqrt{2}-\frac{3¦Ð}{8}$ | C£® | 1-$\frac{3¦Ð}{8}$ | D£® | $\frac{3¦Ð}{8}$ |
| A£® | a3+a3=a6 | B£® | 3a2¡Âa2=2a2 | C£® | £¨a3£©2=a5 | D£® | a•a2=a3 |
| A£® | m£¾1 | B£® | m¡Ý1 | C£® | m¡Ý-1ÇÒm¡Ù1 | D£® | m£¾-1ÇÒm¡Ù1 |
| A£® | m£¾-3 | B£® | m£¼-4 | C£® | m£¾n | D£® | m£¼-n |