题目内容
考点:全等三角形的判定与性质,角平分线的性质
专题:证明题
分析:根据角平分线的定义可得∠CAE=∠BAE,再根据等角的余角相等求出∠AEC=∠AFD,然后求出∠AEC=∠CFE,根据等角对等边可得CE=CF,过点M作MN∥AE,根据两直线平行,同位角相等可得∠BAE=∠BNM,从而得到∠CAE=∠BNM,再判断出四边形ANMF是平行四边形,根据平行四边形的对边相等可得AF=MN,再求出∠B=∠ACF,然后利用“角角边”证明△ACF和△NBM全等,根据全等三角形对应边相等可得CF=MB,从而得证.
解答:
证明:∵AE是角平分线,
∴∠CAE=∠BAE,
∵∠ACB=90°,CD⊥AB,
∴∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE,
∴CE=CF,
过点M作MN∥AE,
∴∠BAE=∠BNM,
∴∠CAE=∠BNM,
又∵FM∥AB,
∴四边形ANMF是平行四边形,
∴AF=MN,
∵∠B+∠BAC=90°,∠ACF+∠BAC=90°,
∴∠B=∠ACF,
在△ACF和△NBM中,
,
∴△ACF≌△NBM(AAS),
∴CF=MB,
∴CE=MB.
∴∠CAE=∠BAE,
∵∠ACB=90°,CD⊥AB,
∴∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE,
∴CE=CF,
过点M作MN∥AE,
∴∠BAE=∠BNM,
∴∠CAE=∠BNM,
又∵FM∥AB,
∴四边形ANMF是平行四边形,
∴AF=MN,
∵∠B+∠BAC=90°,∠ACF+∠BAC=90°,
∴∠B=∠ACF,
在△ACF和△NBM中,
|
∴△ACF≌△NBM(AAS),
∴CF=MB,
∴CE=MB.
点评:本题考查了全等三角形的判定与性质,平行四边形的判定与性质,等角的余角相等,等角对等边的性质,熟记各性质并作出辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关题目
| A、 |
| B、 |
| C、 |
| D、 |
| A、c<0 |
| B、y的最小值为负值 |
| C、当x>1时,y随x的增大而减小 |
| D、x=3是关于x的方程ax2+bx+c=0的一个根 |