题目内容
观察下列算式1-| 1 |
| 22 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 3 |
| 4 |
| 8 |
| 9 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
(1)研究上述算式,你发现什么规律?请用你的发现计算:(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 1002 |
(2)计算:(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| n2 |
分析:由(1-
)(1-
)=
×
=
×
×
×
知,(1-
)(1-
)(1-
)…(1-
)=
×
×
×
×
×
…×
×
=
×
,利用此规律计算.
| 1 |
| 22 |
| 1 |
| 32 |
| 3 |
| 4 |
| 8 |
| 9 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| n2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| n-1 |
| n |
| n+1 |
| n |
| 1 |
| 2 |
| n+1 |
| n |
解答:解:(1)原式=
×
=
;
(2)原式=
×
=
.
| 1 |
| 2 |
| 101 |
| 100 |
| 101 |
| 200 |
(2)原式=
| 1 |
| 2 |
| n+1 |
| n |
| n+1 |
| 2n |
点评:本题是找规律题,找到(1-
)(1-
)(1-
)…(1-
)=
×
×
×
×
×
…×
×
=
×
是解题的关键.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| n2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| n-1 |
| n |
| n+1 |
| n |
| 1 |
| 2 |
| n+1 |
| n |
练习册系列答案
相关题目