题目内容
观察下列算式:
=
=
-
;
=
=
-
;
=
=
-
;…
(1)通过观察,你得到什么结论?用含n(n为正整数)的等式表示:
=
-
=
-
.
(2)利用你得出的结论,计算:
+
+
+
.
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 12 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
(1)通过观察,你得到什么结论?用含n(n为正整数)的等式表示:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)利用你得出的结论,计算:
| 1 |
| (a-1)(a-2) |
| 1 |
| (a-2)(a-3) |
| 1 |
| (a-3)(a-4) |
| 1 |
| (a-4)(a-5) |
分析:(1)根据题中所给出的例子得出结论即可;
(2)根据(1)中的结论可直接进行计算.
(2)根据(1)中的结论可直接进行计算.
解答:解:(1)∵
=
=
-
;
=
=
-
;
=
=
-
,
∴
=
-
.
故答案为:
=
-
;
(2)∵由(1)知,
=
-
,
∴原式=
-
+
-
+
-
+
-
=
-
=-
.
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 12 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
∴
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
故答案为:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)∵由(1)知,
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴原式=
| 1 |
| a-1 |
| 1 |
| a-2 |
| 1 |
| a-2 |
| 1 |
| a-3 |
| 1 |
| a-3 |
| 1 |
| a-4 |
| 1 |
| a-4 |
| 1 |
| a-5 |
=
| 1 |
| a-1 |
| 1 |
| a-5 |
=-
| 4 |
| (a-1)(a-5) |
点评:本题考查的是分式的加减,熟知分式的加减法则是解答此题的关键.
练习册系列答案
相关题目