题目内容

18.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于(  )
A.16B.18C.29D.28

分析 由题意可得8条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,从而得出答案.

解答 解:根据题意可得:8条直线相交于一点时交点最少,此时交点为1个,即m=1;
任意两直线相交都产生一个交点时交点最多,
∵任意三条直线不过同一点,
∴此时交点为:8×(8-1)÷2=28,即n=28;
则m+n=29.
故选C.

点评 本题考查直线的交点问题,难度不大,注意掌握直线相交于一点时交点最少,任意三条直线不过同一点交点最多.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网