题目内容
17.分析 由CD=BC,可得∠CBD=∠CDB,然后由三角形的外角的性质可得:∠ACB=∠CBD+∠CDB=2∠CBD,由∠ABC=∠ACB,进而可得:∠ABC=2∠CBD,然后由∠ABD=∠ABC+∠CBD=3∠CBD=105°,进而可求:∠CBD的度数及∠ABC的度数,然后由三角形的内角和定理即可求∠A的度数.
解答 解:∵CD=BC,
∴∠CBD=∠CDB,
∵∠ACB=∠CBD+∠CDB,
∴∠ACB=2∠CBD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC=2∠CBD,
∵∠ABD=∠ABC+∠CBD=3∠CBD=105°,
∴∠CBD=35°,
∴∠ABC=2∠CBD=70°,
∴∠A=180°-2∠ABC=40°,
故答案为:40.
点评 本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.
练习册系列答案
相关题目