题目内容
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
![]()
(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
(1)x的值为12m或16m;(2)花园面积S的最大值为195平方米.
【解析】
试题分析:(1)根据题意得出长×宽=192,进而得出答案;
(2)由题意可得出:S=x(28-x)=-x2+28x=-(x-14)2+196,再利用二次函数增减性求得最值.
试题解析:(1)∵AB=xm,则BC=(28-x)m,
∴x(28-x)=192,
解得:x1=12,x2=16,
答:x的值为12m或16m;
(2)∵AB=xm,
∴BC=28-x,
∴S=x(28-x)=-x2+28x=-(x-14)2+196,
∵在P处有一棵树与墙CD,AD的距离分别是15m和6m,
∵28-15=13,
∴6≤x≤13,
∴当x=13时,S取到最大值为:S=-(13-14)2+196=195,
答:花园面积S的最大值为195平方米.
考点:1.二次函数的应用;2.一元二次方程的应用.
练习册系列答案
相关题目