题目内容
①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB-∠AOD=90°;④∠COE+∠BOF=180°.
其中正确结论的个数有( )
| A、4个 | B、3个 | C、2个 | D、0个 |
考点:垂线,角平分线的定义
专题:
分析:由∠AOB=∠COD=90°根据等角的余角相等得到∠AOC=∠BOD,而∠COE=∠BOE,即可判断①正确;
由∠AOD+∠COB=∠AOD+∠AOC+90°,而∠AOD+∠AOC=90°,即可判断,②确;
由∠COB-∠AOD=∠AOC+90°-∠AOD,没有∠AOC≠∠AOD,即可判断③不正确;
由OF平分∠AOD得∠AOF=∠DOF,由①得∠AOE=∠DOE,根据周角的定义得到∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,又∠COE=∠BOE,即可判断④正确.
由∠AOD+∠COB=∠AOD+∠AOC+90°,而∠AOD+∠AOC=90°,即可判断,②确;
由∠COB-∠AOD=∠AOC+90°-∠AOD,没有∠AOC≠∠AOD,即可判断③不正确;
由OF平分∠AOD得∠AOF=∠DOF,由①得∠AOE=∠DOE,根据周角的定义得到∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,又∠COE=∠BOE,即可判断④正确.
解答:解:∵∠AOB=∠COD=90°,
∴∠AOC=∠BOD,
而∠COE=∠BOE,
∴∠AOE=∠DOE,所以①正确;
∠AOD+∠COB=∠AOD+∠AOC+90°=90°+90°=180°,所以②正确;
∠COB-∠AOD=∠AOC+90°-∠AOD,
而∠AOC≠∠AOD,所以③不正确;
∵OF平分∠AOD,
∴∠AOF=∠DOF,
而∠AOE=∠DOE,
∴∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,
∵∠COE=∠BOE,
∴∠COE+∠BOF=180°,所以④正确.
故选:B.
∴∠AOC=∠BOD,
而∠COE=∠BOE,
∴∠AOE=∠DOE,所以①正确;
∠AOD+∠COB=∠AOD+∠AOC+90°=90°+90°=180°,所以②正确;
∠COB-∠AOD=∠AOC+90°-∠AOD,
而∠AOC≠∠AOD,所以③不正确;
∵OF平分∠AOD,
∴∠AOF=∠DOF,
而∠AOE=∠DOE,
∴∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,
∵∠COE=∠BOE,
∴∠COE+∠BOF=180°,所以④正确.
故选:B.
点评:本题考查了角度的计算:1周角=60°,1平角=180°,等角的余角相等.也考查了角平分线的定义.
练习册系列答案
相关题目
下列各式一定成立的是( )
| A、7a>5a | ||
B、
| ||
| C、a>-a | ||
| D、a+7>a-4 |
| A、6对 | B、5对 | C、4对 | D、3对 |
在平面直角坐标系中,点A(-2,-3)关于x轴对称点A′的坐标是( )
| A、(2,3) |
| B、(3,-2) |
| C、(-2,3) |
| D、(-3,-2) |
下列实数
,
,0.1414,
,
,无理数个数是( )
| π |
| 3 |
| 22 |
| 7 |
| 3 | 9 |
|
| A、2个 | B、3 | C、4个 | D、5个 |