题目内容
4.| A. | $\frac{\sqrt{2}}{2}$π | B. | $\sqrt{2}$π | C. | 2π | D. | 2$\sqrt{2}$π |
分析 如图,连接AC.首先证明∠EPF=135°,推出点P在与K为圆心的圆上,点P的运动轨迹是$\widehat{EPF}$,在⊙K上取一点M,连接ME、MF、EK、FK,则∠M=180°-∠EPF=45°,推出∠EKF=2∠M=90°,因为EF=4,所以KE=KF=2$\sqrt{2}$,根据弧长公式计算即可解决问题.
解答 解:如图,连接AC.![]()
∵AOCB是正方形,
∴∠AOC=90°,
∴∠AFC=$\frac{1}{2}$∠AOC=45°,
∵EF是直径,
∴∠EAF=90°,
∴∠APF=∠AFP=45°,
∴∠EPF=135°,
∴点P在与K为圆心的圆上,点P的运动轨迹是$\widehat{EPF}$,
在⊙K上取一点M,连接ME、MF、EK、FK,则∠M=180°-∠EPF=45°,
∴∠EKF=2∠M=90°,
∵EF=4,
∴KE=KF=2$\sqrt{2}$,
∴P运动的路径长=$\frac{90π•2\sqrt{2}}{180}$=$\sqrt{2}$π,
故选B.
点评 本题考查正方形的性质、旋转的性质、轨迹、圆等知识,解题的关键是正确发现轨迹的位置,学会添加辅助线,利用圆的有关性质解决问题,属于中考填空题中的压轴题.
练习册系列答案
相关题目
14.
如图,△ABC中,AB=AC,∠C=72°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为( )
| A. | 36° | B. | 60° | C. | 72° | D. | 82° |
12.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是( )
| A. | AB2=AC•BC | B. | BC2=AC•BC | C. | AC=$\frac{\sqrt{5}-1}{2}$BC | D. | BC=$\frac{3-\sqrt{5}}{2}$AB |
19.下列式子正确的是( )
| A. | -2.1>-2.01 | B. | -2>0 | C. | $\frac{1}{3}$<$\frac{1}{4}$ | D. | -15<13 |
16.已知关于x的方程x2+(2m-3)x+m2=0有两个实数根x1,x2,且x1+x2=x1•x2,则m=( )
| A. | m=-3或1 | B. | m=1 | C. | m=-3 | D. | m=-3且m≠0 |