题目内容
(1)求证:△APQ≌△QCE;
(2)求∠QAE的度数;
(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.
考点:正方形的性质,全等三角形的判定与性质
专题:
分析:(1)判断出△PBQ是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE,再求出AP=CQ,然后利用“角边角”证明即可;
(2)根据全等三角形对应边相等可得AQ=EQ,判断出△AQE是等腰直角三角形,再根据等腰直角三角形的性质解答;
(3)把△ABQ绕点A逆时针旋转90°得到△ADG,求出∠GAF=45°,从而得到∠GAF=∠QAF,再利用“边角边”证明△AQF和△AGF全等,根据全等三角形对应边相等可得QF=GF,再根据两直线平行,同位角相等求出∠CQF=45°,然求出CQ=CF,分别用x表示出CQ、CF、QF,利用勾股定理列式表示出QF,然后列出方程求出x,再求出△AGF的面积,即为△AQF的面积.
(2)根据全等三角形对应边相等可得AQ=EQ,判断出△AQE是等腰直角三角形,再根据等腰直角三角形的性质解答;
(3)把△ABQ绕点A逆时针旋转90°得到△ADG,求出∠GAF=45°,从而得到∠GAF=∠QAF,再利用“边角边”证明△AQF和△AGF全等,根据全等三角形对应边相等可得QF=GF,再根据两直线平行,同位角相等求出∠CQF=45°,然求出CQ=CF,分别用x表示出CQ、CF、QF,利用勾股定理列式表示出QF,然后列出方程求出x,再求出△AGF的面积,即为△AQF的面积.
解答:(1)证明:在正方形ABCD中,∠B=90°,AB=BC,
∵BP=BQ,
∴△PBQ是等腰直角三角形,AP=CQ,
∴∠BPQ=45°,
∵CE为正方形外角的平分线,
∴∠APQ=∠QCE=135°,
∵AQ⊥QE,
∴∠CQE+∠AQB=90°,
又∵∠PAQ+∠AQB=90°,
∴∠PAQ=∠CQE,
在△APQ和△QCE中,
,
∴△APQ≌△QCE(ASA);
(2)解:∵△APQ≌△QCE,
∴AQ=EQ,
∵AQ⊥QE,
∴△AQE是等腰直角三角形,
∴∠QAE=45°;
(3)解:如图,把△ABQ绕点A逆时针旋转90°得到△ADG,
则AQ=AG,BQ=DG,∠BAQ=∠DAG,
∵∠QAE=45°,
∴∠GAF=45°,
∴∠GAF=∠QAF,
在△AQF和△AGF中,
,
∴△AQF≌△AGF(SAS),
∴QF=GF,
∵QF∥CE,
∴∠CQF=45°,
∴△CQF是等腰直角三角形,
∴CQ=CF,
∵BQ=x,
∴CQ=CF=2-x,
∴DF=2-(2-x)=x,
∴QF=GF=2x,
在Rt△CQF中,CQ2+CF2=QF2,
即(2-x)2+(2-x)2=(2x)2,
解得x=2-
,
∴△AGF的面积=
×2(2-
)×2=4-2
,
即△AQF的面积为4-2
.
∵BP=BQ,
∴△PBQ是等腰直角三角形,AP=CQ,
∴∠BPQ=45°,
∵CE为正方形外角的平分线,
∴∠APQ=∠QCE=135°,
∵AQ⊥QE,
∴∠CQE+∠AQB=90°,
又∵∠PAQ+∠AQB=90°,
∴∠PAQ=∠CQE,
在△APQ和△QCE中,
|
∴△APQ≌△QCE(ASA);
(2)解:∵△APQ≌△QCE,
∴AQ=EQ,
∵AQ⊥QE,
∴△AQE是等腰直角三角形,
∴∠QAE=45°;
(3)解:如图,把△ABQ绕点A逆时针旋转90°得到△ADG,
则AQ=AG,BQ=DG,∠BAQ=∠DAG,
∵∠QAE=45°,
∴∠GAF=45°,
∴∠GAF=∠QAF,
在△AQF和△AGF中,
|
∴△AQF≌△AGF(SAS),
∴QF=GF,
∵QF∥CE,
∴∠CQF=45°,
∴△CQF是等腰直角三角形,
∴CQ=CF,
∵BQ=x,
∴CQ=CF=2-x,
∴DF=2-(2-x)=x,
∴QF=GF=2x,
在Rt△CQF中,CQ2+CF2=QF2,
即(2-x)2+(2-x)2=(2x)2,
解得x=2-
| 2 |
∴△AGF的面积=
| 1 |
| 2 |
| 2 |
| 2 |
即△AQF的面积为4-2
| 2 |
点评:本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.
练习册系列答案
相关题目
已知
+
=2
,则a的值是( )
| 2a-3 |
| 5 |
| 5 |
| A、2 | B、3 | C、4 | D、5 |