题目内容

6.某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与港口B之间的距离即BC的长度为(30$\sqrt{2}$+10$\sqrt{6}$)海里.

分析 作AD⊥BC于D,根据题意求出∠ABD=45°,得到AD=BD=30$\sqrt{2}$,求出∠C=60°,根据正切的概念求出CD的长,得到答案.

解答 解:作AD⊥BC于D,
∵∠EAB=30°,AE∥BF,
∴∠FBA=30°,又∠FBC=75°,
∴∠ABD=45°,又AB=60,
∴AD=BD=30$\sqrt{2}$,
∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,
∴∠C=60°,
在Rt△ACD中,∠C=60°,AD=30$\sqrt{2}$,
则tanC=$\frac{AD}{CD}$,
∴CD=$\frac{30\sqrt{2}}{\sqrt{3}}$=10$\sqrt{6}$,
∴BC=BD+CD=30$\sqrt{2}$+10$\sqrt{6}$,
故答案为:(30$\sqrt{2}$+10$\sqrt{6}$)海里.

点评 本题考查的是解直角三角形的知识的应用,掌握锐角三角函数的概念、选择正确的三角函数是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网