题目内容
x4-3x3-5x2+3x+4.
考点:因式分解
专题:
分析:首先把x4-3x3-5x2+3x+4分组结合为(x4-x3)-(2x3-2x2)-(7x2-7x)-(4x-4),然后提取公因式x-1,再一次分组进行因式分解,最后因式分解彻底即可.
解答:解:x4-3x3-5x2+3x+4
=(x4-x3)-(2x3-2x2)-(7x2-7x)-(4x-4)
=x3(x-1)-2x2(x-1)-7x(x-1)-4(x-1)
=(x-1)(x3-2x2-7x-4)
=(x-1)[(x3-2x2-3x)-(4x+4)]
=(x-1)[x(x+1)(x-3)-4(x+1)]
=(x-1)(x+1)(x2-3x-4)
=(x-1)(x-4)(x+1)2.
=(x4-x3)-(2x3-2x2)-(7x2-7x)-(4x-4)
=x3(x-1)-2x2(x-1)-7x(x-1)-4(x-1)
=(x-1)(x3-2x2-7x-4)
=(x-1)[(x3-2x2-3x)-(4x+4)]
=(x-1)[x(x+1)(x-3)-4(x+1)]
=(x-1)(x+1)(x2-3x-4)
=(x-1)(x-4)(x+1)2.
点评:本题主要考查了因式分解的知识点,解答本题的关键是对题干因式进行分组结合找到公因式,此题有一定的难度.
练习册系列答案
相关题目