题目内容
如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.
(1)当AB=2时,求△GEC的面积;
(2)求证:AE=EF.
![]()
解:(1)∵AB=BC=2,点E为BC的中点,
∴BE=EC=1,
∵AE⊥EF,
∴△ABE∽△ECG,
∴AB:EC=BE:GC,
即:2:1=1:GC,
解得:GC=
,
∴S△GEC=
•EC•CG=
×1×
=
;
(2)证明:取AB的中点H,连接EH;
∵ABCD是正方形,
AE⊥EF;
∴∠1+∠AEB=90°,
∠2+∠AEB=90°
∴∠1=∠2,
∵BH=BE,∠BHE=45°,
且∠FCG=45°,
∴∠AHE=∠ECF=135°,AH=CE,
∴△AHE≌△ECF,
∴AE=EF;
![]()
练习册系列答案
相关题目