题目内容


如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.

求证:BE=CF.

 

 


       证明:∵四边形ABCD为矩形,

∴AC=BD,则BO=CO.(2分)

∵BE⊥AC于E,CF⊥BD于F,

∴∠BEO=∠CFO=90°.

又∵∠BOE=∠COF,

∴△BOE≌△COF.(4分)

∴BE=CF.(5分)

点评:    本题主要考查矩形的性质及三角形全等的判定方法.解此题的主要错误是思维顺势,想当然,由ABCD是矩形,就直接得出OB=OD,对对应边上的高的“对应边”理解不透彻.

 

 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网