题目内容
【题目】阅读理解题: 学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2
=(1+
)2 , 我们来进行以下的探索:
设a+b
=(m+n
)2(其中a,b,m,n都是正整数),则有a+b
=m2+2n2+2mn
,∴a=m+2n2 , b=2mn
, 这样就得出了把类似a+b
的式子化为平方式的方法.
请仿照上述方法探索并解决下列问题:
(1)当a,b,m,n都为正整数时,若a﹣b
=(m﹣n
)2 , 用含m,n的式子分别表示a,b,得a= , b=;
(2)利用上述方法,找一组正整数a,b,m,n填空:﹣
=(﹣
)2
(3)a﹣4
=(m﹣n
)2且a,m,n都为正整数,求a的值.
【答案】
(1)m2+5n2|2mn
(2)9|4|2|1
(3)解:∵2mn=4,
∴mn=2,
而m,n都为正整数,
∴m=2,n=1或m=1,n=2,
当m=2,n=1时,a=9;
当m=1,n=2时,a=21.
即a的值为9或21
【解析】解:(1)∵a﹣b
=(m﹣n
)2,
∴a﹣b
=m2﹣2
mn+5n2,
∴a=m2+5n2,n=2mn;
2)取m=2,n=1,
则a=4+5=9,b=4;
故答案为m2+5n2,2mn;9,4,2,1.
(1)利用完全平方公式把(m﹣n
)2展开即可得到用含m,n的式子分别表示出a,b;(2)利用(1)中的表达式,令m=2,n=1,则可计算出对应的a和b的值;(3)利用(1)的结果得到2mn=4,则mn=2,再利用m,n都为正整数得到m=2,n=1或m=1,n=2,然后计算对应的a的值即可.
练习册系列答案
相关题目