题目内容

如图,点C为线段AB上任意一点(不与A、B两点重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BDE,CA=CD,CB=CE,∠ACD与∠BDE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.
(1)求证:△ACE≌△DCB;
(2)请你判断△AMC与△DPM的形状有何关系,并说明理由.
考点:相似三角形的判定,全等三角形的判定,等腰三角形的性质
专题:
分析:(1)证明∠ACE=∠DCB,根据“SAS”证明全等;
(2)由(1)得∠CAM=∠PDM,又∠AMC=∠DMP,所以两个三角形相似.
解答:(1)证明:∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
在△ACE和△DCB中,
CA=CD
∠ACE=∠DCB
CE=CB

∴△ACE≌△DCB(SAS).
(2)解:△AMC∽△DMP.
理由:∵△ACE≌△DCB,
∴∠CAE=∠CDB,
又∵∠AMC=∠DMP,
∴△AMC∽△DMP.
点评:本题考查了相似三角形的判定以及性质、全等三角形的判定和性质、等腰三角形的性质,题目的综合性较强,难度不大,解题的关键是熟记各种相似三角形的判定方法以及全等三角形的各种判定方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网