题目内容

6.如图,在平面内5×5的正方形网格中,每个小正方形的边长为1,则图中阴影部分面积为$\frac{107}{60}$.

分析 阴影部分用长方形的面积减去两个三角形列式计算即可得解.

解答 解:如图,∵△CDE∽△CAB,
∴$\frac{CD}{AC}$=$\frac{DE}{AB}$,即$\frac{1}{3}$=$\frac{DE}{5}$,
∴DE=$\frac{5}{3}$,
∴EG=$\frac{2}{3}$,
同理FG=$\frac{2}{5}$,
∴阴影部分面积=2×1-$\frac{1}{3}$×$\frac{1}{2}×\frac{1}{2}$-$\frac{1}{2}$×$\frac{2}{3}$×$\frac{2}{5}$=$\frac{107}{60}$,
故答案为:$\frac{107}{60}$.

点评 本题考查了三角形的面积,根据网格结构观察出阴影部分的面积的表示是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网