ÌâÄ¿ÄÚÈÝ
3£®£¨1£©ÇóÖ±ÏßABºÍÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãPÊÇλÓÚÖ±ÏßABÉÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¨²»ÓëA¡¢BÖØºÏ£©£¬¹ýµãP×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪC£¬½»Ö±ÏßABÓÚµãD£¬¹ýµãP×÷PE¡ÍABÓÚµãE£¬½»xÖáÓÚµãH£º
¢ÙÉè¡÷PDEµÄÖܳ¤Îªm£¬µãPµÄºá×ø±êΪt£¬ÇómÓëtµÄº¯Êý¹ØÏµÊ½£»
¢ÚÁ¬½ÓPA£¬ÒÔPAΪ±ßÔÚPAµÄÏ·½×÷ÈçͼËùʾµÄÕý·½ÐÎAPFQ£¬Ëæ×ŵãPµÄÔ˶¯£¬Õý·½ÐεĴóС¡¢Î»ÖÃÒ²ËæÖ®¸Ä±ä£¬ÇëÖ±½Óд³öµ±¶¥µãQÇ¡ºÃÂäÔÚyÖáÉÏʱPµãµÄ×ø±ê£®
·ÖÎö £¨1£©ÏÈÇó³öµãA×ø±ê£¬ÔÚ¸ù¾ÝÕýÇÐÖµÇó³öµãB×ø±ê£®½øÒ»²½Çó³öÖ±ÏßAB½âÎöʽ¼´¿É£»°ÑA£¬B£¬×ø±ê´úÈë¼´¿ÉÇó³ö¡¢Å×ÎïÏß½âÎöʽ£»
£¨2£©¢ÙÉè³öµãP×ø±ê£¬±íʾµãD×ø±ê½áºÏÈý½Çº¯Êý¼´¿É±íʾÈý½ÇÐεÄÖܳ¤£»
¢Ú¸ù¾ÝÌâÒâÏÈÂÛÖ¤¡÷ACP¡Õ¡÷AOQ£¬Çó³öCP³¤¶È£¬´úÈëÅ×ÎïÏß½âÎöʽÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©Èçͼ1![]()
µãAÔÚxÖáÉÏ£¬OA=2£¬
¡àµãA£¨2£¬0£©£¬
ÓÉtan¡ÏOAB=$\frac{3}{4}$£¬¿ÉÉèÖ±ÏßABµÄ½âÎöʽΪ£ºy=$\frac{3}{4}$x+n£¬
´úÈëµãA£¨2£¬0£©½âµÃ£ºn=$-\frac{3}{2}$£¬
¡àÖ±ÏßAB½âÎöʽΪ£ºy=$\frac{3}{4}$x$-\frac{3}{2}$£¬
¹ýµãB×÷BG¡ÍxÖᣬ´¹×ãΪG£¬
°Ñx=-8´úÈëÖ±ÏßAB£¬½âµÃ£ºy=$-\frac{15}{2}$£¬
¡àµãB£¨-8£¬$-\frac{15}{2}$£©£¬
¡ßÅ×ÎïÏßy=-$\frac{1}{4}{x^2}$+bx+c¹ýA¡¢BÁ½µã£¬
¡à$\left\{\begin{array}{l}{0=-1+2b+c}\\{-\frac{15}{2}=-16-8b+c}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=-\frac{3}{4}}\\{c=\frac{5}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪ£ºy=$-\frac{1}{4}{x}^{2}-\frac{3}{4}x+\frac{5}{2}$£¬
£¨2£©Èçͼ2![]()
¢ÙÁîP£¨t£¬$-\frac{1}{4}{t}^{2}-\frac{3}{4}t+\frac{5}{2}$£©£¬¡àD£¨t£¬$\frac{3}{4}t-\frac{3}{2}$£©£¬
¡àPD=$-\frac{1}{4}{t}^{2}-\frac{3}{2}t+4$£¬
¡ß¡ÏACP=¡ÏPEA=90¡ã£¬¡ÏPHC=¡ÏAHE£¬
¡à¡ÏOAB=¡ÏEPD£¬
¡ßtan¡ÏOAB=tan¡ÏEPD=$\frac{3}{4}$£¬
¡à$\frac{DE}{PE}=\frac{3}{4}$£¬
ÁîDE=3a£¬ÔòPE=4a£¬¡àPD=5a£¬
¼´$-\frac{1}{4}{t}^{2}-\frac{3}{2}t+4=5a$£¬
¡àa=$-\frac{1}{20}{t}^{2}-\frac{3}{10}t+\frac{4}{5}$£¬
ÓÖ¡ßm=PD+DE+EP=12a=$-\frac{3}{5}{t}^{2}-\frac{18}{5}t+\frac{48}{5}$£¬
¢Úµ±¶¥µãQÇ¡ºÃÂäÔÚyÖáÉÏʱ£¬
¡ß¡ÏPAC+¡ÏOAQ=¡ÏOAQ+¡ÏAQO=90¡ã
¡à¡ÏPAC=¡ÏAQO£¬
ÔÚ¡÷ACPºÍ¡÷QOAÖУ¬
$\left\{\begin{array}{l}{¡ÏPAC=¡ÏAQO}\\{¡ÏAOQ=¡ÏACP=90¡ã}\\{AQ=AP}\end{array}\right.$
¡à¡÷ACP¡Õ¡÷QOA£¬
¡àPC=OA=2£¬
°Ñy=2´úÈëÅ×ÎïÏß½âÎöʽµÃ£º$-\frac{1}{4}{x}^{2}-\frac{3}{4}x+\frac{5}{2}$=2£¬
½âµÃ£ºx=$\frac{-3+\sqrt{17}}{2}$£¬»òx=$\frac{-3-\sqrt{17}}{2}$£¬
¡à´ËʱµãPµÄ×ø±êΪ£º£¨$\frac{-3+\sqrt{17}}{2}$£¬2£©£¬£¨$\frac{-3-\sqrt{17}}{2}$£¬2£©£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄ×ÛºÏÎÊÌ⣬»áÇó½»µãµÄ×ø±ê£¬ÔËÓõãÇóÅ×ÎïÏߵĽâÎöʽ£¬»á¸ù¾ÝÕý·½ÐεÄÐÔÖʽøÐзÖÎöÊǽâÌâµÄ¹Ø¼ü£®
| A£® | B£® | C£® | D£® |
| A£® | $\frac{FG}{GD}=\frac{BF}{AF}$ | B£® | $\frac{AE}{AC}=\frac{BF}{AF}$ | C£® | $\frac{FG}{AE}=\frac{BF}{AF}$ | D£® | $\frac{CE}{EA}=\frac{BF}{AF}$ |
| A£® | 4 | B£® | 4$\sqrt{3}$ | C£® | $\frac{5}{2}$ | D£® | 6-2$\sqrt{3}$ |