题目内容

6.阅读下面的问题,然后回答,
分解因式:x2+2x-3,
解:原式
=x2+2x+1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:
(1)x2-4x+3
(2)4x2+12x-7.

分析 根据题意给出的方法即可求出答案.

解答 解:(1)x2-4x+3
=x2-4x+4-4+3
=(x-2)2-1
=(x-2+1)(x-2-1)
=(x-1)(x-3)
(2)4x2+12x-7
=4x2+12x+9-9-7
=(2x+3)2-16
=(2x+3+4)(2x+3-4)
=(2x+7)(2x-1)

点评 本题考查因式分解,涉及完全平方公式,平方差公式.

练习册系列答案
相关题目
11.阅读下列材料,完成相应学习任务:
                                                        四点共圆的条件
    我们知道,过任意一个三角形的三个顶点能作一个圆,过任意一个四边形的四个顶点能作一个圆吗?小明经过实践探究发现:过对角互补的四边形的四个顶点能作一个圆,下面是小明运用反证法证明上述命题的过程:
已知:在四边形ABCD中,∠B+∠D=180°.
求证:过点A、B、C、D可作一个圆.
证明:如图(1),假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆外,设AD与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.
    如图(2)假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆内,设AD的延长线与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠ADCA=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.
    因此得到四点共圆的条件:过对角互补的四边形的四个顶点能作一个圆.
学习任务:
(1)材料中划线部分结论的依据是圆的内接四边形对角互补.
(2)证明过程中主要体现了下列哪种数学思想:D(填字母代号即可)
            A、函数思想   B、方程思想   C、数形结合思想   D、分类讨论思想
(3)如图(3),在四边形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,则求∠ADB的大小.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网