题目内容
(1)若BD=6,求AE的长;
(2)求证:EG=CG+DG.
考点:全等三角形的判定与性质,等边三角形的性质
专题:
分析:(1)根据等边三角形的性质证明△ACE≌△BCD就可以得出AE=BD,而得出结论;
(2)在EG上截取FE=DG,连接CF,CG,在等边△ABC和等边△DCE中,证△DGC≌△EFC,推出CG=CF,∠GCD=∠FCE,得出等边三角形GCF,推出CG=GF即可.
(2)在EG上截取FE=DG,连接CF,CG,在等边△ABC和等边△DCE中,证△DGC≌△EFC,推出CG=CF,∠GCD=∠FCE,得出等边三角形GCF,推出CG=GF即可.
解答:解:(1)∵△ABC和△CDE都是等边三角形,
∴AC=BC,CE=DC,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
∴∠DCB=∠ACE.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴AE=BD.
∵BD=6,
∴AE=6.
答:AE=6.
(2)证明:在EG上截取FE=DG,连接CF,CG,
∵△ABC和△DCE都是等边三角形,
∴AC=BC,CE=CD,∠DCE=∠BCA=60°,
∴∠DCE+∠DCM=∠BCA+∠DCM,
即∠ACE=∠BCD,
在△ACE和△BCD中,
∴△ACE≌△BCD(SAS),
∴∠BDC=∠AEC,
在△DGC和△EFC中,
∴△DGC≌△EFC(SAS),
∴CG=CF,∠GCD=∠FCE,
∵∠FCE+∠FCD=60°,
∴∠GCD+∠FCD=60°,即∠GCF=60°
∴△GCF为等边三角形,
∴CG=GF,
∴GE=GF+FE=GD+CG,
即EG=CG+DG.
∴AC=BC,CE=DC,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
∴∠DCB=∠ACE.
在△ACE和△BCD中
|
∴△ACE≌△BCD(SAS),
∴AE=BD.
∵BD=6,
∴AE=6.
答:AE=6.
(2)证明:在EG上截取FE=DG,连接CF,CG,
∵△ABC和△DCE都是等边三角形,
∴AC=BC,CE=CD,∠DCE=∠BCA=60°,
∴∠DCE+∠DCM=∠BCA+∠DCM,
即∠ACE=∠BCD,
在△ACE和△BCD中,
|
∴△ACE≌△BCD(SAS),
∴∠BDC=∠AEC,
在△DGC和△EFC中,
|
∴△DGC≌△EFC(SAS),
∴CG=CF,∠GCD=∠FCE,
∵∠FCE+∠FCD=60°,
∴∠GCD+∠FCD=60°,即∠GCF=60°
∴△GCF为等边三角形,
∴CG=GF,
∴GE=GF+FE=GD+CG,
即EG=CG+DG.
点评:本题考查了全等三角形的性质和判定,等边三角形的性质和判定的运用,等腰三角形的性质的应用,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关题目