题目内容
15.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
| 摸到白球的次数m | 59 | 96 | 116 | 290 | 480 | 601 |
| 摸到白球的频率$\frac{m}{n}$ | 0.59 | 0.64 | 0.58 | 0.58 | 0.60 | 0.601 |
(2)“摸到白球”的概率的估计值是0.6 (精确到0.1);
(3)试估算口袋中黑、白两种颜色的球各有多少只?
分析 (1)利用频率=频数÷样本容量=频率直接求解即可;
(2)根据统计数据,当n很大时,摸到白球的频率接近0.6;
(3)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数.
解答 解:(1)填表如下:
| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
| 摸到白球的次数m | 59 | 96 | 116 | 290 | 480 | 601 |
| 摸到白球的频率$\frac{m}{n}$ | 0.59 | 0.64 | 0.58 | 0.58 | 0.60 | 0.601 |
(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20-12=8(个).
答:黑球8个,白球12个.
故答案为:(1)0.59,0.58;(2)0.6.
点评 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
练习册系列答案
相关题目
16.计算(-x2y)2的结果是( )
| A. | x4y2 | B. | -x4y2 | C. | x2y2 | D. | -x2y2 |