题目内容

20.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=$\frac{1}{3}$AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有3条.

分析 能画3条:①与EF互相垂直且垂足为O,构建直角三角形,可以证明两直角三角形全等得EF=PQ;
②在AD上截取AP=$\frac{1}{3}$AD,连接PO延长得到PQ;
③同理在AB了截取BQ=$\frac{1}{3}$AB,连接QO并延长得到PQ.

解答 解:这样的直线PQ(不同于EF)有3条,
①如图1,过O作PQ⊥EF,交AD于P,BC于Q,
则PQ=EF;
②如图2,以点A为圆心,以AE为半径画弧,交AD于P,连接PO并延长交BC于Q,则PQ=EF;
③如图3,以B为圆心,以AE为半径画弧,交AB于Q,连接QO并延长交DC于点P,则PQ=EF.

点评 本题考查了正方形的性质和全等三角形的性质与判定,本题虽然是做一条线段与EF相等,实际上是做好两件事:①画线段PQ,②能证明这两条线段相等,这比证明更为复杂,因此首先要构建直角三角形全等,找到与EF相等的边长的位置,本题的线段不止一条,容易丢解,要思考周全.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网