题目内容

9.如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.
(1)求证:AM=BN;
(2)当MA∥CN时,试求旋转角α的余弦值.

分析 (1)由CA=CB,E,F分别是CA,CB边的三等分点,得CE=CF,根据旋转的性质,CM=CE=CN=CF,∠ACM=∠BCN=α,证明△AMC≌△BNC即可;
(2)当MA∥CN时,∠ACN=∠CAM,由∠ACN+∠ACM=90°,得到∠CAM+∠ACM=90°,所以cosα=$\frac{CM}{AC}$=$\frac{1}{3}$.

解答 解:(1)∵CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,
∴CE=CF
根据旋转的性质,CM=CE=CN=CF,∠ACM=∠BCN=α,
在△AMC和△BNC中,
$\left\{\begin{array}{l}{CA=CB}\\{∠ACM=∠BCN}\\{CM=CN}\end{array}\right.$,
∴△AMC≌△BNC,
∴AM=BN;
(2)∵MA∥CN,
∴∠ACN=∠CAM,
∵∠ACN+∠ACM=90°,
∴∠CAM+∠ACM=90°,
∴∠AMC=90°,
∴cosα=$\frac{CM}{AC}$=$\frac{CE}{AC}$=$\frac{1}{3}$.

点评 本题主要考查了旋转的性质、三角形全等的判定与性质、平行线的性质以及锐角三角函数的综合运用,难度适中,掌握旋转的性质是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网