题目内容

6.如图,在平面直角坐标系xoy中,已知点A(2,1)、B(-1,1)、C(-1,-3)、D(2,-3),把一根长为2015个单位长度没有弹性的细线(线的粗细忽略不计)的一端固定在D处,并按D→C→B→A→D…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标为(2,-2).

分析 根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.

解答 解:∵A(2,1)、B(-1,1)、C(-1,-3)、D(2,-3),
∴AB=2-(-1)=3,BC=1-(-3)=4,CD=2-(-1)=3,DA=1-(-3)=4,
∴绕四边形ABCD一周的细线长度为3+4+3+4=14,
2015÷14=143…13,
∴细线另一端在绕四边形第143圈的第13个单位长度的位置,
即从点D向左沿D→C→B→A→D第13个单位所在的点的坐标即为所求,也就是点(2,-2).
故答案为:(2,-2).

点评 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2015个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网