题目内容
| 2 |
考点:全等三角形的判定与性质,正方形的性质
专题:计算题
分析:作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,利用AAS得到三角形ABC与三角形BEQ全等,利用全等三角形的对应边相等得到AC=BQ=3,BC=EQ,设BC=EQ=x,由OM为梯形ACQE的中位线,利用梯形中位线定理表示出OM,再由CM,表示出O坐标,进而表示出OC的长,根据已知OC的长列出关于x的方程,求出方程的解得到x的值,即可确定出BC的长.
解答:
解:作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).
设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,
∴AB=BE,∠ABE=90°,
∵∠ACB=90°,
∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,
∴∠BAC=∠EBQ,
在△ABC和△BEQ中,
,
∴△ACB≌△BQE(AAS),
∴AC=BQ=3,BC=EQ,
设BC=EQ=x,
∴O为AE中点,
∴OM为梯形ACQE的中位线,
∴OM=
,
又∵CM=
CQ=
,
∴O点坐标为(
,
),
根据题意得:OC=4
=
,
解得:x=5,
则BC=5.
故答案为:5.
设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,
∴AB=BE,∠ABE=90°,
∵∠ACB=90°,
∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,
∴∠BAC=∠EBQ,
在△ABC和△BEQ中,
|
∴△ACB≌△BQE(AAS),
∴AC=BQ=3,BC=EQ,
设BC=EQ=x,
∴O为AE中点,
∴OM为梯形ACQE的中位线,
∴OM=
| 3+x |
| 2 |
又∵CM=
| 1 |
| 2 |
| 3+x |
| 2 |
∴O点坐标为(
| 3+x |
| 2 |
| 3+x |
| 2 |
根据题意得:OC=4
| 2 |
(
|
解得:x=5,
则BC=5.
故答案为:5.
点评:此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,梯形中位线定理,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目