题目内容

19.十八世纪数学家欧拉证明了简单多面体中顶点数(v),面数(f),棱数(e)之间存在一个有趣的数量关系:v+f-e=2,这就是著名的欧拉定理.某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形拼接而成,且有24个顶点,每个顶点都3条棱,设该多面体外表面三角形个数是x个,八边形的个数是y,则x+y=14.

分析 得到多面体的棱数,求得面数即为x+y的值.

解答 解:∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;
∴共有24×3÷2=36条棱,
那么24+f-36=2,解得f=14,
∴x+y=14.
故答案为:14.

点评 本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.难点是熟练掌握欧拉定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网