题目内容

已知一组正数x1,x2,x3,x4,x5的方差为:S2=
1
5
(x12+x22+x32+x42+x52-20),则关于数据x1+2,x2+2,x3+2,x4+2,x5+2的四个说法:①方差为S2;②平均数为2;③平均数为4;④方差为4S2.其中正确的说法是
 
考点:方差,算术平均数
专题:
分析:根据方差的公式求得原数据的平均数后,求得新数据的平均数,再根据方差公式的性质得到新数据的方差.
解答:解:由方差的计算公式可得:
S12=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]
=
1
n
[x12+x22+…+xn2-2(x1+x2+…+xn)•
.
x
+n
.
x
n2]
=
1
n
[x12+x22+…+xn2-2n
.
x
n2+n
.
x
n2]
=
1
n
[x12+x22+…+xn2]-
.
x
12=
1
5
(x12+x22+x32+x42+x52-20),
可得平均数
.
x
1=2.
对于数据x1+2,x2+2,x3+2,x4+2,x5+2,有
.
x
2=2+2=4,
其方差S22=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]=S12
故答案为:①③.
点评:此题主要考查了方差和平均数的性质,一般地设有n个数据,x1,x2,…xn,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网