题目内容

如图,∠A=∠D,AC=DF,那么需要补充一个直接条件________(写出一个即可),才能使△ABC≌△DEF.

AB=DE(或∠B=∠E或∠C=∠F) 【解析】添加条件AB=DE, 在△ABC和△DEF中, , ∴△ABC≌△DEF(SAS); 或添加条件∠B=∠E, 在△ABC和△DEF中, , ∴△ABC≌△DEF(AAS); 或添加条件∠C=∠F, 在△ABC和△DEF中, , ∴△ABC≌△DEF(ASA); 故答案为:AB=DE(或...
练习册系列答案
相关题目

如图,有一抛物线拱桥,当水位线在AB位置时,拱桥顶离水面2m,水面宽4m,水面下降1m后,水面宽为( )

A. 5m B. 6m C. m D. 2m

D 【解析】试题分析:建立如图所示的坐标系,则点A的坐标为(-2,-2),设函数关系式为,则-2=4a,所以a= -,所以,当y=-3时, ,所以水面宽为m,故选:D.

根据下列表格对应值:

x

3

4

5

y=ax2+bx+c

0.5

﹣0.5

﹣1

判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是(  )

A. x<3 B. x>5 C. 3<x<4 D. 4<x<5

C 【解析】试题分析:∵x=3时,y=0.5,即ax2+bx+c>0; x=4时,y=﹣0.5,即ax2+bx+c<0, ∴抛物线与x轴的一个交点在(3,0)和(4,0)之间, ∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3<x<4. 故选C.

如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )

A. 50° B. 51° C. 51.5° D. 52.5°

D 【解析】试题分析:根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE=∠BED=(180°﹣25°)=77.5°,,根据平角的定义即可求出∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故答案选D.

每一个多边形都可以按图的方法割成若干个三角形.而每一个三角形的三个内角的和是180°.按图的方法,十二边形的内角和是__________度.

1800 【解析】∵过四边形的一个顶点可画一条对角线,将四边形分成两个三角形, 过五边形的一个顶点可画两条对角线,将五边形分成三个三角形, 过六边形的一个顶点可画三条对角线,将六边形分成四个三角形, ∴过十二边形的一个顶点可画九条对角线,将十二边形分成十个三角形, 而三角形的内角和等于180°, ∴十二边形的内角和是180°×10=1800°. 故答案为:...

三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是 (  )

A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 根本无法确定

C 【解析】∵32+42=25,∴以3、4为直角边的三角形的斜边为5, ∵5<6,∴以3、4、6为三边构成的三角形是钝角三角形. 故选:C.

在锐角三角形中,最大角α的取值范围是 (  )

A. 0°<α<90° B. 60°<α<90° C. 60°<α<180° D. 60°≤α<90°

D 【解析】三角形三个内角的和等于180°,设其他两个角分别为β和γ,由题意α<90°,α?β且α?γ,α+β+γ=180°,所以3α?180°,即α?60°. 故选:D.

如图,抛物线y=﹣x2+3x+4与x轴交于点A,B,与y轴交于点C,P(m,n)为第一象限内抛物线上的一点,点D的坐标为(0,6).

(1)OB=_________,抛物线的顶点坐标为_________________;

(2)当n=4时,求点P关于直线BC的对称点P′的坐标;

(3)是否存在直线PD,使直线PD所对应的一次函数随x的增大而增大?若存在,直接写出m的取值范围;若不存在,请说明理由.

(1)4,(,);(2)(0,1);(3)1<m<2. 【解析】 试题分析:(1)当y=0时,即﹣x2+3x+4=0,解得:x1=4,x2=﹣1,∴点A(﹣1,0)点B(4,0),∴OB=4,y=﹣x2+3x+4=,∴抛物线的顶点坐标为(,),故答案为:4,(,). (2)如图,连接CP,CP′, n=4时,﹣m2+3m+4=4,解得:m1=3,m2=0(舍去),∴这时P点...

关于二次函数y=x2﹣2x﹣3的图象,下列说法中错误的是( )

A. 当x<2,y随x的增大而减小 B. 函数的对称轴是直线x=1

C. 函数的开口方向向上 D. 函数图象与y轴的交点坐标是(0,﹣3)

A 【解析】试题分析:∵y=x2﹣2x﹣3=(x﹣1)2﹣4, ∴抛物线开口向上,对称轴为x=1,当x<1时y随x的增大而减小,故B、C正确,A不正确, 令x=0可得y=﹣3, ∴抛物线与y轴的交点坐标为(0,﹣3),故D正确, 故选A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网