题目内容

从10名学生(6男4女,其中小芳为女生)中,抽选6人参加“防震知识”竞赛.若规定男生选3人,则“选到小芳”的事件应该是____(选填“必然事件、不可能事件、随机事件”).

随机事件 【解析】根据事件发生的可能性大小判断相应事件的类型即可. 解答:【解析】 “随机事件是指在一定条件下,可能发生也可能不发生的事件”, 从10名学生(6男4女,其中小芳为女生)中,抽选6人参加“防震知识”竞赛. 若规定男生选3人,则女生也选3人,“选到小芳”的可能性大,但不一定发生. 故答案为:随机事件.
练习册系列答案
相关题目

如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为(  )

A. 4S1 B. 4S2 C. 4S2+S3 D. 3S1+4S3

A 【解析】试题分析:设等腰直角三角形的直角边长为a,中间小正方形的边长为b,则另两个直角三角形的边长分别为a-b,a+b,所以S1=,S2=,S3=,平行四边形的面积=2S1+2S2+S3=++=2=4S1,故答案选A.

如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是(  )

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

D 【解析】试题分析:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧,∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y= =0,∴a﹣b+c=0,即a=b﹣c...

如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_____.

﹣1<x<3 【解析】试题分析:根据二次函数的性质可得:二次函数与x轴的另一个交点坐标为(-1,0),则根据二次函数的图像可得:不等式的解集为.

用十个球设计一个游戏,使摸到红球、白球的可能性相同,并且摸到黄球的可能性比摸到红球的可能性小.

红球4个,白球4个,黄球2个. 【解析】试题分析:此题要想使摸到红球、白球的可能性相同,摸到黄球的可能性比摸到红球的可能性小,只要红球、白球个数相同,红球的个数多于黄球的个数即可. 试题解析:由题意知共10个球,即红球个数+白球个数+黄球个数=10 摸到红球、白球的可能性相同 ∴红球个数=白球个数=1,2,3,4 ∴红球个数,白球个数,黄球个数可能是:1,1,8或2,...

如图,有一抛物线拱桥,当水位线在AB位置时,拱桥顶离水面2m,水面宽4m,水面下降1m后,水面宽为( )

A. 5m B. 6m C. m D. 2m

D 【解析】试题分析:建立如图所示的坐标系,则点A的坐标为(-2,-2),设函数关系式为,则-2=4a,所以a= -,所以,当y=-3时, ,所以水面宽为m,故选:D.

根据下列表格对应值:

x

3

4

5

y=ax2+bx+c

0.5

﹣0.5

﹣1

判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是(  )

A. x<3 B. x>5 C. 3<x<4 D. 4<x<5

C 【解析】试题分析:∵x=3时,y=0.5,即ax2+bx+c>0; x=4时,y=﹣0.5,即ax2+bx+c<0, ∴抛物线与x轴的一个交点在(3,0)和(4,0)之间, ∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3<x<4. 故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网