ÌâÄ¿ÄÚÈÝ
10£®£¨1£©µ±µãCÔ˶¯Ê±£¬ËıßÐÎADBEµÄÐÎ×´Äܱä³ÉÁâÐÎÂð£¿Èç¹ûÄÜ£¬Çó³ö´ËʱµãCµÄλÖã¬Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®
£¨2£©Ð¡Ã÷¾¹ý̽¾¿·¢ÏÖ£ºµãCÔ˶¯»áÓ°ÏìËıßÐÎADBEÐÎ×´£¬µ«ÊÇADÓëBEµÄλÖùØÏµÊ¼ÖÕ²»±ä£¬ÇëÄã°ïËû½âÊÍÆäÖеÄÔÒò£®
·ÖÎö £¨1£©ÈôËıßÐÎADBEΪÁâÐΣ¬ÔòABÓëDE»¥Ïഹֱƽ·Ö£¬ÔòBºÍDµÄ×ø±ê¿ÉÇóµÃ£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬½ø¶øÇóµÃCµÄ×ø±ê£»
£¨2£©ÉèDµÄ×ø±êÊÇ£¨a£¬-$\frac{4}{a}$£©£¬ÀûÓÃÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóÀûÓÃa±íʾ³öADºÍBEµÄ½âÎöʽ£¬¸ù¾ÝÖ±Ï߯½ÐеÄÌõ¼þ¼´¿ÉÅжϣ®
½â´ð ½â£º£¨1£©ÈôËıßÐÎADBEΪÁâÐΣ¬ÔòABÓëDE»¥Ïഹֱƽ·Ö£¬
ÓÉÌâÒâµÃ£¬A£¨-2£¬2£©£¬B£¨0£¬2£©£®
Ôò·´±ÈÀýº¯ÊýµÄ½âÎöʽÊÇy=-$\frac{4}{x}$£¬E£¨-1£¬0£©D£¨-1£¬4£©£®
ÉèÖ±ÏßBDµÄ½âÎöʽÊÇy=kx+b£¬
½«B£¨0£¬2£©£¬D£¨-1£¬4£©´úÈëy=kx+b£¬¿ÉµÃ£º$\left\{\begin{array}{l}{2=b}\\{4=-k+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-2}\\{b=2}\end{array}\right.$£¬
ÔòÖ±ÏßBDµÄ½âÎöʽÊÇy=-2x+2£¬
ËùÒÔCµÄ×ø±êÊÇ£¨1£¬0£©£»
£¨2£©ÉèDµÄ×ø±êÊÇ£¨a£¬-$\frac{4}{a}$£©£¬Ö±ÏßADµÄ½âÎöʽÊÇy=kx+b£¬ÔòE£¨a£¬0£©£®
½«A£¨-2£¬2£©£¬D£¨a£¬-$\frac{4}{a}$£©´úÈë¿ÉµÃ£º$\left\{\begin{array}{l}{-\frac{4}{a}=ka+b}\\{2=-2k+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{2}{a}}\\{b=2-\frac{4}{a}}\end{array}\right.$£¬
ÔòÖ±ÏßADµÄ½âÎöʽÊÇy=-$\frac{2}{a}$x+£¨2-$\frac{4}{a}$£©£®
ͬÀí¿ÉµÃÖ±ÏßBEµÄ½âÎöʽÊÇy=-$\frac{2}{a}$x+2£¬
¡àADºÍBEʼÖÕÆ½ÐУ®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýºÍÖ±ÏߵĽâÎöʽ£¬ÕýÈ·ÀûÓÃa±íʾ³öADºÍBEµÄ½âÎöʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | Ô² | B£® | ÍÖÔ² | ||
| C£® | Ò»°ãµÄƽÐÐËıßÐÎ | D£® | ¾ØÐÎ |
| A£® | $\sqrt{41}$ | B£® | $\sqrt{34}$ | C£® | 8 | D£® | 6 |
| A£® | $\root{3}{8}=¡À2$ | B£® | -$\root{3}{-7}=-\root{3}{7}$ | C£® | $-\sqrt{\frac{16}{9}}=-\frac{4}{3}$ | D£® | $\sqrt{\frac{9}{4}}=¡À\frac{3}{2}$ |