题目内容

如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=_____.

【答案】40°

【解析】试题分析:先根据三角形外角性质计算出∠EBF=∠A+∠E=85°,再根据圆内接四边形的性质计算出∠BCD=180°﹣∠A=125°,然后再根据三角形外角性质求∠F.

【解析】
∵∠A=55°,∠E=30°,

∴∠EBF=∠A+∠E=85°,

∵∠A+∠BCD=180°,

∴∠BCD=180°﹣55°=125°,

∵∠BCD=∠F+∠CBF,

∴∠F=125°﹣85°=40°.

故答案为40°.

考点:圆内接四边形的性质;三角形内角和定理.

【题型】填空题
【结束】
17

某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种 棵橘子树,橘子总个数最多.

练习册系列答案
相关题目

已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.

(1)求一次函数与反比例函数的解析式;

(2)求两函数图象的另一个交点坐标;

(3)直接写出不等式;kx+b≤的解集.

【答案】(1)y=﹣2x+6, ;(2)(5,﹣4);(3)﹣2≤x<0或x≥5.

【解析】试题分析:(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.

(2)两个函数的解析式作为方程组,解方程组即可解决问题.

(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.

试题解析:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴,∴,∴CD=10,∴点C坐标(﹣2,10),B(0,6),A(3,0),∴解得: ,∴一次函数为y=﹣2x+6.

∵反比例函数经过点C(﹣2,10),∴n=﹣20,∴反比例函数解析式为

(2)由,解得,故另一个交点坐标为(5,﹣4);

(3)由图象可知的解集:﹣2≤x<0或x≥5.

考点:反比例函数与一次函数的交点问题.

【题型】解答题
【结束】
22

一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.

(1)写出按上述规定得到所有可能的两位数;

(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网