题目内容
若点P1(x1,y1),P2(x2,y2)在反比例函数y= (k>0)的图象上,且x1=-x2,则( )
A. y1<y2 B. y1=y2 C. y1>y2 D. y1=-y2
如图,AB是⊙O的直径,BC是⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E,
(1)求证:CD为⊙O的切线;
(2)若EA=BO=2,求图中阴影部分的面积(结果保留π)
如图,在中, ,点是边的中点,过作于点,点是边上的一个动点, 与相交于点.当的值最小时, 与之间的数量关系是( )
A. B. C. D.
如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为 .
如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=( )
某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为____,图①中m的值是____;
(2)求本次你调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
【答案】(1)50,32;(2)平均数是16,众数是10元,中位数是15元; (3) 928人.
【解析】分析:(1)由捐5元的4人占调查人数的8%求调查的总人数;捐10元的人数除以调查的总人数可求m;(2)根据平均数,众数,中位数的定义求解;(3)用调查人数中捐10元的百分比乘以本校人数.
详【解析】(1)本次接受随机抽样调查的学生人数为4÷8%=50(人);
因为×100%=32%,所以m=32.
故答案为50,32;
(2)平均数是(4×5+16×10+12×15+10×20+8×30)=16(元),
众数是10元,中位数是15元.
(3)该校本次活动捐款金额为10元的学生人数是2900×32%=928(人)
点睛:求中位数时,首先要先排序,如果数据个数是奇数,按从小到大的顺序,取中间的那个数;如果数据个数是偶数,按从小到大的顺序,取中间两个数的平均数;众数是出现次数最多的数据.
【题型】解答题【结束】24
某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.
(参考数据: =1.1, =1.2, =1.3, =1.4)
如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=_____.
【答案】40°
【解析】试题分析:先根据三角形外角性质计算出∠EBF=∠A+∠E=85°,再根据圆内接四边形的性质计算出∠BCD=180°﹣∠A=125°,然后再根据三角形外角性质求∠F.
【解析】∵∠A=55°,∠E=30°,
∴∠EBF=∠A+∠E=85°,
∵∠A+∠BCD=180°,
∴∠BCD=180°﹣55°=125°,
∵∠BCD=∠F+∠CBF,
∴∠F=125°﹣85°=40°.
故答案为40°.
考点:圆内接四边形的性质;三角形内角和定理.
【题型】填空题【结束】17
某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种 棵橘子树,橘子总个数最多.
如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.
(1)当时,求S的值.
(2)求S关于的函数解析式.
(3)①若S=时,求的值;
②当m>2时,设,猜想k与m的数量关系并证明.
下列语句中正确的个数有 ( )
(1)过一点有且只有一条直线与已知直线平行;(2)在同一平面内两条直线不平行就垂直;(3)如果两条直线都和第三条直线垂直,那么这两条直线互相平行;(4)互相垂直的两条线段一定相交;(5)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(6)汽车玻璃上的雨刷的运动可以看作是平移.
A. 0 B. 1 C. 2 D. 3