题目内容

如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.

(1)求证:D是BC的中点;

(2)若DE=3,BD﹣AD=2,求⊙O的半径;

(3)在(2)的条件下,求弦AE的长.

(1)证明见解析;(2)⊙O的半径为;(3)AE=. 【解析】试题分析:(1)根据直径所对的圆周角是直角得到AD⊥BC,应用等腰三角形的三线合一证得点D为BC的中点; (2)应用等腰三角形的性质和判定证得BD=DE=3,进而求得BD=3,AD=1,应用勾股定理求得AB的长,即可得到半径的长; (3)解法一:通过证明△CAB∽△CDE,应用相似三角形的性质解得CE的长,再求AE的长...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网