题目内容
13.$\left\{\begin{array}{l}{\frac{m}{3}-\frac{n}{4}=-1}\\{\frac{m}{2}+\frac{n}{3}=7}\end{array}\right.$.分析 方程组整理后,利用加减消元法求出解即可.
解答 解:方程组整理得:$\left\{\begin{array}{l}{4m-3n=-12①}\\{3m+2n=42②}\end{array}\right.$,
①×2+②×3得:17m=102,
解得:m=6,
把m=6代入②得:n=12,
则方程组的解为$\left\{\begin{array}{l}{m=6}\\{n=12}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
7.
如图,边长为a的正六边形中,连接一些顶点,中间围成一个新的小正六边形(阴影部分),则$\frac{{l}_{外部正六边形}}{{l}_{阴影}}$(l为周长)等于( )
| A. | 3 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | 2 |
8.以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(米)与飞行时间t(秒)的关系如下表,且h与t的函数关系是我们学过的一次函数、二次函数、反比例函数中的一种
(1)请你从上述函数中选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由
(2)什么时候小球最高?最大高度是多少?
(3)小球运动的时间t在什么范围内,小球在运动过程中的高度不低于18.75米.
| 时间t(秒) | 0 | 1 | 3 | 4 |
| 高度h(米) | 0 | 15 | 15 | 0 |
(2)什么时候小球最高?最大高度是多少?
(3)小球运动的时间t在什么范围内,小球在运动过程中的高度不低于18.75米.