ÌâÄ¿ÄÚÈÝ
18£®£¨1£©Ð´³öÊýÖáÉϵãBËù±íʾµÄÊýÊÇ-4£»
£¨2£©µ±t=$\frac{1}{2}$ʱ£¬PµãËù±íʾµÄÊýÊÇ3£»µ±t=2ʱ£¬PµãËù±íʾµÄÊýÊÇ-6£»tÃëʱ£¬µãPËù±íʾµÄÊý6-6t£»£¨Óú¬tµÄ´úÊýʽ±íʾ£©£»
£¨3£©MÊÇAPµÄÖе㣬NΪPBµÄÖе㣬µãPÔÚÔ˶¯µÄ¹ý³ÌÖУ¬Ïß¶ÎMNµÄ³¤¶ÈÊÇ·ñ·¢Éú±ä»¯£¿Èô±ä»¯£¬ËµÃ÷ÀíÓÉ£»Èô²»±ä£¬ÇëÄ㻳öͼÐΣ¬²¢Çó³öÏß¶ÎMNµÄ³¤£®
·ÖÎö £¨1£©Bµã±íʾµÄÊýΪ6-10=-4£»
£¨2£©¸ù¾ÝÊýÖáÉÏÁ½µã¼äµÄ¾àÀ빫ʽ½¨Á¢·½³ÌÇó³öÆä½â£¬ÔÙ¸ù¾ÝÊýÖáÉϵãµÄÔ˶¯¾Í¿ÉÒÔÇó³öPµãµÄ×ø±ê£»
£¨3£©·ÖÀàÌÖÂÛ£º¢Ùµ±µãPÔÚµãA¡¢BÁ½µãÖ®¼äÔ˶¯Ê±£¬¢Úµ±µãPÔ˶¯µ½µãBµÄ×ó²àʱ£¬ÀûÓÃÖеãµÄ¶¨ÒåºÍÏ߶εĺͲîÒ×Çó³öMN£®
½â´ð ½â£º£¨1£©Bµã±íʾµÄÊýΪ6-10=-4£»
¹Ê´ð°¸Îª+-4£»
£¨2£©¡ßµ±t=$\frac{1}{2}$ʱ£¬PµãËù±íʾµÄÊýÊÇ3£»µ±t=2ʱ£¬PµãËù±íʾµÄÊýÊÇ-6£»tÃëʱ£¬µãP±íʾµÄÊýΪ£º6-6t£»
¹Ê´ð°¸Îª£º3£¬-6£¬6-6t£»
£¨3£©Ïß¶ÎMNµÄ³¤¶È²»·¢Éú±ä»¯£®
ÀíÓÉ£º·ÖÁ½ÖÖÇé¿ö£º
¢Ùµ±µãPÔÚA¡¢BÁ½µãÖ®¼äÔ˶¯Ê±£¬Èçͼ£º![]()
MN=MP+NP=$\frac{1}{2}$BP+$\frac{1}{2}$PA=$\frac{1}{2}$AB=5£»
¢Úµ±µãPÔ˶¯µ½µãBµÄ×ó±ßʱ£¬Èçͼ£º![]()
MN=MP-NP=$\frac{1}{2}$AP-$\frac{1}{2}$PB=$\frac{1}{2}$AB=5£®
×ÛÉÏËùÊö£¬Ïß¶ÎMNµÄ³¤¶È²»·¢Éú±ä»¯£¬ÆäֵΪ5£®
µãÆÀ ±¾Ì⿼²éÁËÁ½µã¼äµÄ¾àÀ룬¸ù¾ÝÒÑÖªµÃ³ö¸÷Ïß¶ÎÖ®¼äµÄµÈÁ¿¹ØÏµÊǽâÌâ¹Ø¼ü£¬×¢ÒâµÚ¶þÎÊÐèÒª·ÖÀàÌÖÂÛ£®
| A£® | ¿ª¿ÚÏòÏ | B£® | ¶¥µã×ø±êÊÇ£¨-1£¬2£© | ||
| C£® | ¶Ô³ÆÖáÊÇ x=1 | D£® | Óë x ÖáÓÐÁ½¸ö½»µã |
| A£® | $\frac{4}{3}$ | B£® | $\frac{3}{2}$ | C£® | $\frac{8}{5}$ | D£® | $\frac{12}{7}$ |
| A£® | -2 | B£® | 1 | C£® | 0 | D£® | 5 |
| A£® | x2-4x=3 | B£® | 3£¨x+2£©=6 | C£® | x+2y=1 | D£® | x-1=$\frac{1}{x}$ |